Information Technology for Recurrent Laryngeal Nerve Identification with Adaptive Adjustment of the Electrophysiological Method

M. Dyvak, A. Dyvak, D. Osadchuk, Volodymyr Tymets, V. Shidlovsky, Larysa Kovalska
{"title":"Information Technology for Recurrent Laryngeal Nerve Identification with Adaptive Adjustment of the Electrophysiological Method","authors":"M. Dyvak, A. Dyvak, D. Osadchuk, Volodymyr Tymets, V. Shidlovsky, Larysa Kovalska","doi":"10.1109/ACIT49673.2020.9209012","DOIUrl":null,"url":null,"abstract":"Informational technology for recurrent laryngeal nerve (RLN) monitoring among the tissues of a surgical wound is represented in the paper. Unlike the existing technologies, it applies the adaptive adjustment of electrophysiological method for a patient. The results of electrophysiological experiments which prove the effectiveness of the suggested technology are demonstrated.","PeriodicalId":372744,"journal":{"name":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT49673.2020.9209012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Informational technology for recurrent laryngeal nerve (RLN) monitoring among the tissues of a surgical wound is represented in the paper. Unlike the existing technologies, it applies the adaptive adjustment of electrophysiological method for a patient. The results of electrophysiological experiments which prove the effectiveness of the suggested technology are demonstrated.
基于电生理自适应调节的喉返神经识别信息技术
本文介绍了喉返神经(RLN)在外科伤口组织监测中的信息技术。与现有技术不同的是,它采用电生理方法对患者进行自适应调节。电生理实验结果证明了该技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信