Deep Learning-Aided Spatial Discrimination for Multipath Mitigation

Ali A. Abdallah, Z. Kassas
{"title":"Deep Learning-Aided Spatial Discrimination for Multipath Mitigation","authors":"Ali A. Abdallah, Z. Kassas","doi":"10.1109/PLANS46316.2020.9109935","DOIUrl":null,"url":null,"abstract":"A deep learning-aided spatial discriminator for multipath mitigation is developed. The proposed system compensates for the limitations of conventional beamforming approaches, especially at the stages of: prefiltering, model order estimation (MOE), and direction-of-arrival (DOA) estimation. Three environments are considered to design and train the proposed deep neural networks (DNNs): indoor office buildings, indoor open ceiling, and outdoor urban area. The performance of the proposed DNN-based MOE is compared to the conventional approaches of minimum description length (MDL) criterion and Akaike information criterion (AIC). The proposed DNN-based MOE is shown to significantly outperform existing approaches and to increase the degrees-of-freedom. Four experiments are presented to assess the performance of the proposed system in multipath-rich environments corresponding to indoor pedestrian navigation and ground vehicle urban navigation with cellular long-term evolution (LTE) signals. The proposed system exhibited a position root mean-squared error (RMSE) of 1.67 m, 3.38 m, 1.73 m, and 2.16 m.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9109935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

A deep learning-aided spatial discriminator for multipath mitigation is developed. The proposed system compensates for the limitations of conventional beamforming approaches, especially at the stages of: prefiltering, model order estimation (MOE), and direction-of-arrival (DOA) estimation. Three environments are considered to design and train the proposed deep neural networks (DNNs): indoor office buildings, indoor open ceiling, and outdoor urban area. The performance of the proposed DNN-based MOE is compared to the conventional approaches of minimum description length (MDL) criterion and Akaike information criterion (AIC). The proposed DNN-based MOE is shown to significantly outperform existing approaches and to increase the degrees-of-freedom. Four experiments are presented to assess the performance of the proposed system in multipath-rich environments corresponding to indoor pedestrian navigation and ground vehicle urban navigation with cellular long-term evolution (LTE) signals. The proposed system exhibited a position root mean-squared error (RMSE) of 1.67 m, 3.38 m, 1.73 m, and 2.16 m.
基于深度学习的多路径空间识别算法
提出了一种基于深度学习的多径缓解空间鉴别器。该系统弥补了传统波束形成方法的局限性,特别是在预滤波、模型阶估计和到达方向估计阶段。本文考虑了三种环境来设计和训练所提出的深度神经网络(dnn):室内办公楼、室内开放式天花板和室外城市区域。将该方法与传统的最小描述长度准则(MDL)和Akaike信息准则(AIC)进行了性能比较。所提出的基于dnn的MOE显着优于现有方法,并增加了自由度。提出了四个实验来评估该系统在多路径丰富的环境下的性能,这些环境对应于室内行人导航和具有蜂窝长期进化(LTE)信号的地面车辆城市导航。该系统的位置均方根误差(RMSE)分别为1.67 m、3.38 m、1.73 m和2.16 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信