Efficient distributed source coding for multiple receivers via matrix sparsification

C. Avin, Michael Borokhovich, A. Cohen, Zvi Lotker
{"title":"Efficient distributed source coding for multiple receivers via matrix sparsification","authors":"C. Avin, Michael Borokhovich, A. Cohen, Zvi Lotker","doi":"10.1109/ISIT.2011.6033914","DOIUrl":null,"url":null,"abstract":"Consider the problem of source coding with side information in large networks with multiple receivers. In this case, standard coding techniques are either prohibitively complex to decode, or require source-network coding separation, resulting in sub-optimal transmission schemes. To alleviate this problem, we offer a joint network-source coding scheme based on matrix sparsification at the code design phase, which allows the terminals to use an efficient decoding procedure (syndrome decoding using LDPC), despite the network coding throughout the network. Via a novel relation between matrix sparsification and rate-distortion theory, we give lower and upper bounds on the best achievable sparsification performance, and analyze our scheme in the limit of weak side information at the receivers. Simulation results motivate the use of this scheme at non-limiting rates as well.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"103 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Consider the problem of source coding with side information in large networks with multiple receivers. In this case, standard coding techniques are either prohibitively complex to decode, or require source-network coding separation, resulting in sub-optimal transmission schemes. To alleviate this problem, we offer a joint network-source coding scheme based on matrix sparsification at the code design phase, which allows the terminals to use an efficient decoding procedure (syndrome decoding using LDPC), despite the network coding throughout the network. Via a novel relation between matrix sparsification and rate-distortion theory, we give lower and upper bounds on the best achievable sparsification performance, and analyze our scheme in the limit of weak side information at the receivers. Simulation results motivate the use of this scheme at non-limiting rates as well.
通过矩阵稀疏化实现多接收机的高效分布式源编码
考虑具有多个接收器的大型网络中带有侧信息的源编码问题。在这种情况下,标准编码技术要么解码过于复杂,要么需要源网络编码分离,从而导致次优传输方案。为了缓解这一问题,我们在编码设计阶段提出了一种基于矩阵稀疏化的联合网络源编码方案,该方案允许终端使用高效的解码过程(使用LDPC的综合征解码),尽管网络编码在整个网络中进行。通过矩阵稀疏化与率失真理论之间的新关系,给出了可实现的最佳稀疏化性能的下界和上界,并在接收机弱侧信息的极限下分析了我们的方案。仿真结果也激励了该方案在非限制速率下的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信