Musical instruments recognition using hidden Markov model

Jonghyun Lee, J. Chun
{"title":"Musical instruments recognition using hidden Markov model","authors":"Jonghyun Lee, J. Chun","doi":"10.1109/ACSSC.2002.1197175","DOIUrl":null,"url":null,"abstract":"A new musical instrument recognition technique based on a hidden Markov model (HMM) is proposed. The spectral envelope is the key information of instrument characteristic and timbre. We decompose an instrument sound into sinusoidal components (harmonics) and noise components and estimate the amplitudes of the harmonics component. We want to express the spectral envelope effectively using estimated amplitude, therefore, we define three kinds of features and apply a recognition procedure to each feature. The HMM model used is continuous single Gaussian output HMM. To evaluate the performance of the recognition technique, the proposed technique is applied to classify the real instrumental sound of MUMS (MacGill University Master Samples). The recognition success ratio is more than 70%.","PeriodicalId":284950,"journal":{"name":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2002.1197175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A new musical instrument recognition technique based on a hidden Markov model (HMM) is proposed. The spectral envelope is the key information of instrument characteristic and timbre. We decompose an instrument sound into sinusoidal components (harmonics) and noise components and estimate the amplitudes of the harmonics component. We want to express the spectral envelope effectively using estimated amplitude, therefore, we define three kinds of features and apply a recognition procedure to each feature. The HMM model used is continuous single Gaussian output HMM. To evaluate the performance of the recognition technique, the proposed technique is applied to classify the real instrumental sound of MUMS (MacGill University Master Samples). The recognition success ratio is more than 70%.
基于隐马尔可夫模型的乐器识别
提出了一种新的基于隐马尔可夫模型的乐器识别技术。谱包络是表征仪器特性和音色的关键信息。我们将乐器声音分解为正弦分量(谐波)和噪声分量,并估计谐波分量的幅值。为了利用估计的幅度有效地表示谱包络,我们定义了三种特征,并对每种特征应用识别程序。所使用的HMM模型是连续的单高斯输出HMM。为了评估识别技术的性能,将所提出的技术应用于MUMS (MacGill University Master Samples)的真实器乐声音分类。识别成功率大于70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信