New gene selection algorithm using hypeboxes to improve performance of classifiers

A. Bagirov, Karim Mardaneh
{"title":"New gene selection algorithm using hypeboxes to improve performance of classifiers","authors":"A. Bagirov, Karim Mardaneh","doi":"10.1504/ijbra.2020.10031329","DOIUrl":null,"url":null,"abstract":"The use of DNA microarray technology allows to measure the expression levels of thousands of genes in one single experiment which makes possible to apply classification techniques to classify tumours. However, the large number of genes and relatively small number of tumours in gene expression datasets may (and in some cases significantly) diminish the accuracy of many classifiers. Therefore, efficient gene selection algorithms are required to identify most informative genes or groups of genes to improve the performance of classifiers. In this paper, a new gene selection algorithm is developed using marginal hyberboxes of genes or groups of genes for each tumour type. Informative genes are defined using overlaps between hyberboxes. The results on six gene expression datasets demonstrate that the proposed algorithm is able to considerably reduce the number of genes and significantly improve the performance of classifiers.","PeriodicalId":434900,"journal":{"name":"Int. J. Bioinform. Res. Appl.","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bioinform. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbra.2020.10031329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of DNA microarray technology allows to measure the expression levels of thousands of genes in one single experiment which makes possible to apply classification techniques to classify tumours. However, the large number of genes and relatively small number of tumours in gene expression datasets may (and in some cases significantly) diminish the accuracy of many classifiers. Therefore, efficient gene selection algorithms are required to identify most informative genes or groups of genes to improve the performance of classifiers. In this paper, a new gene selection algorithm is developed using marginal hyberboxes of genes or groups of genes for each tumour type. Informative genes are defined using overlaps between hyberboxes. The results on six gene expression datasets demonstrate that the proposed algorithm is able to considerably reduce the number of genes and significantly improve the performance of classifiers.
新基因选择算法使用超盒来提高分类器的性能
使用DNA微阵列技术可以在一次实验中测量数千个基因的表达水平,这使得应用分类技术对肿瘤进行分类成为可能。然而,基因表达数据集中大量的基因和相对较少的肿瘤可能(在某些情况下显著)降低许多分类器的准确性。因此,需要高效的基因选择算法来识别信息量最大的基因或基因组,以提高分类器的性能。本文提出了一种新的基因选择算法,利用基因或基因组的边缘杂交盒对每种肿瘤类型进行筛选。信息性基因是通过杂交盒之间的重叠来定义的。在6个基因表达数据集上的实验结果表明,该算法能够显著减少基因数量,显著提高分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信