Optimizing term vectors for efficient and robust filtering

David A. Evans, Jeffrey Bennett, David A. Hull
{"title":"Optimizing term vectors for efficient and robust filtering","authors":"David A. Evans, Jeffrey Bennett, David A. Hull","doi":"10.1145/860435.860546","DOIUrl":null,"url":null,"abstract":"We describe an efficient, robust method for selecting and optimizing terms for a classification or filtering task. Terms are extracted from positive examples in training data based on several alternative term-selection algorithms, then combined additively after a simple term-score normalization step to produce a merged and ranked master term vector. The score threshold for the master vector is set via beta-gamma regulation over all the available training data. The process avoids para-meter calibrations and protracted training. It also results in compact profiles for run-time evaluation of test (new) documents. Results on TREC-2002 filtering-task datasets demonstrate substantial improvements over TREC-median results and rival both idealized IR-based results and optimized (and expensive) SVM-based classifiers in general effectiveness.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe an efficient, robust method for selecting and optimizing terms for a classification or filtering task. Terms are extracted from positive examples in training data based on several alternative term-selection algorithms, then combined additively after a simple term-score normalization step to produce a merged and ranked master term vector. The score threshold for the master vector is set via beta-gamma regulation over all the available training data. The process avoids para-meter calibrations and protracted training. It also results in compact profiles for run-time evaluation of test (new) documents. Results on TREC-2002 filtering-task datasets demonstrate substantial improvements over TREC-median results and rival both idealized IR-based results and optimized (and expensive) SVM-based classifiers in general effectiveness.
优化术语向量,实现高效鲁棒滤波
我们描述了一种高效、稳健的方法来选择和优化分类或过滤任务的术语。基于几种备选术语选择算法从训练数据中的正例中提取术语,然后经过简单的术语得分归一化步骤进行加性组合,产生合并和排名的主术语向量。主向量的分数阈值是通过对所有可用训练数据的β - γ调节来设置的。这个过程避免了参数校准和长时间的训练。它还为测试(新)文档的运行时评估生成了紧凑的概要文件。在TREC-2002过滤任务数据集上的结果表明,与trec -中位数结果相比,有了很大的改进,并且在总体有效性上可以与理想化的基于ir的结果和优化的(昂贵的)基于svm的分类器相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信