A Geographically Weighted Total Composite Error Analysis for Soft Classification

N. Tsutsumida, T. Yoshida, D. Murakami, T. Nakaya
{"title":"A Geographically Weighted Total Composite Error Analysis for Soft Classification","authors":"N. Tsutsumida, T. Yoshida, D. Murakami, T. Nakaya","doi":"10.1109/IGARSS39084.2020.9323939","DOIUrl":null,"url":null,"abstract":"Errors in land cover classification are often spatially heterogeneous even though a soft classification model such as spectral unmixing is implemented to mitigate a mixed pixel problem. The estimated land covers are fractions of targeted classes with the restriction of the sum to one and being non-negative. To assess the classification with considering a spatial heterogeneity, we propose a geographically weighted total composite error analysis. By using the USGS global reference database, we assessed errors of spectral unmixing classification of ALOS AVNIR-2 data into 4 land cover classes. Results yield a spatial surface of local errors by the Aitchison distance and address that the error magnitude across space is associated with the complexity of land covers.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Errors in land cover classification are often spatially heterogeneous even though a soft classification model such as spectral unmixing is implemented to mitigate a mixed pixel problem. The estimated land covers are fractions of targeted classes with the restriction of the sum to one and being non-negative. To assess the classification with considering a spatial heterogeneity, we propose a geographically weighted total composite error analysis. By using the USGS global reference database, we assessed errors of spectral unmixing classification of ALOS AVNIR-2 data into 4 land cover classes. Results yield a spatial surface of local errors by the Aitchison distance and address that the error magnitude across space is associated with the complexity of land covers.
软分类的地理加权全复合误差分析
尽管采用了光谱分解等软分类模型来缓解混合像元问题,但土地覆盖分类中的误差往往是空间异质性的。估计的土地覆盖是目标类别的一部分,其总和限制为1,并且是非负的。为了评估分类与考虑空间异质性,我们提出了一个地理加权的总复合误差分析。利用美国地质调查局(USGS)全球参考数据库,对ALOS AVNIR-2数据的光谱分解分类误差进行了评估。结果通过艾奇逊距离产生局部误差的空间表面,并指出空间误差的大小与土地覆盖的复杂性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信