Distribution Privacy Under Function Recoverability

Ajaykrishnan Nageswaran, P. Narayan
{"title":"Distribution Privacy Under Function Recoverability","authors":"Ajaykrishnan Nageswaran, P. Narayan","doi":"10.1109/ISIT44484.2020.9174389","DOIUrl":null,"url":null,"abstract":"A user generates n independent and identically distributed data random variables with a probability mass function that must be guarded from a querier. The querier must recover, with a prescribed accuracy, a given function of the data from each of n independent and identically distributed user-devised query responses. The user chooses the data pmf and the random query responses to maximize distribution privacy as gauged by the divergence between the pmf and the querier's best estimate of it based on the n query responses. A general lower bound is provided for distribution privacy; and, for the case of binaryvalued functions, upper and lower bounds that converge to said bound as n grows. Explicit strategies for the user and querier are identified.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A user generates n independent and identically distributed data random variables with a probability mass function that must be guarded from a querier. The querier must recover, with a prescribed accuracy, a given function of the data from each of n independent and identically distributed user-devised query responses. The user chooses the data pmf and the random query responses to maximize distribution privacy as gauged by the divergence between the pmf and the querier's best estimate of it based on the n query responses. A general lower bound is provided for distribution privacy; and, for the case of binaryvalued functions, upper and lower bounds that converge to said bound as n grows. Explicit strategies for the user and querier are identified.
函数可恢复性下的分布隐私
用户生成n个独立且分布相同的数据随机变量,这些变量具有一个概率质量函数,必须对查询器进行保护。查询程序必须以规定的精度从n个独立且相同分布的用户设计的查询响应中的每一个中恢复给定的数据函数。用户选择数据pmf和随机查询响应来最大化分布隐私,这是通过pmf与查询者基于n个查询响应的最佳估计之间的差异来衡量的。给出了分布隐私的一般下界;对于二值函数,随着n的增长,上界和下界收敛于上述边界。确定了用户和查询器的显式策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信