Accelerometer based Gait Recognition using Adapted Gaussian Mixture Models

Muhammad Muaaz, R. Mayrhofer
{"title":"Accelerometer based Gait Recognition using Adapted Gaussian Mixture Models","authors":"Muhammad Muaaz, R. Mayrhofer","doi":"10.1145/3007120.3007164","DOIUrl":null,"url":null,"abstract":"Gait authentication using a cell phone based accelerometer sensor offers an unobtrusive, user-friendly, and a periodic way of authenticating individuals to their smartphones. In this paper, we present a GMM-UBM based gait recognition approach for a realistic scenario (when the phone is placed inside the trouser pocket and the user is walking) by using the magnitude data of a smartphone-based tri-axes accelerometer sensor. To evaluate our approach we use a gait data set of 35 participants collected at their respective normal walking pace in two different sessions with an average gap of 25 days between the sessions. We obtained EERs of 3.031%, 11.531%, and 14.393% for the same-day, mix-days, and cross-days, respectively.","PeriodicalId":394387,"journal":{"name":"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007120.3007164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Gait authentication using a cell phone based accelerometer sensor offers an unobtrusive, user-friendly, and a periodic way of authenticating individuals to their smartphones. In this paper, we present a GMM-UBM based gait recognition approach for a realistic scenario (when the phone is placed inside the trouser pocket and the user is walking) by using the magnitude data of a smartphone-based tri-axes accelerometer sensor. To evaluate our approach we use a gait data set of 35 participants collected at their respective normal walking pace in two different sessions with an average gap of 25 days between the sessions. We obtained EERs of 3.031%, 11.531%, and 14.393% for the same-day, mix-days, and cross-days, respectively.
基于加速度计的自适应高斯混合模型步态识别
使用基于手机加速度计传感器的步态认证提供了一种不显眼的、用户友好的、定期的个人智能手机身份验证方式。在本文中,我们通过使用基于智能手机的三轴加速度计传感器的幅度数据,提出了一种基于GMM-UBM的步态识别方法,用于现实场景(当手机放在裤子口袋里并且用户正在行走时)。为了评估我们的方法,我们使用了35名参与者的步态数据集,他们以各自的正常步行速度在两个不同的会议中收集,会议之间的平均间隔为25天。同日、混合日和跨日的EERs分别为3.031%、11.531%和14.393%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信