{"title":"FFSB: Fast Fibonacci Series-Based personalized PageRank on MPI","authors":"HongJun Yin, Jing Li, Yue Niu","doi":"10.1109/ICICS.2013.6782908","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast MPI algorithm for Monte Carlo approximation PageRank vector of all the nodes in a graph, named Fast Fibonacci Series-Based Personal PageRank. In the latter paper we will call it FFSB algorithm for short. The basic ideal is very efficiently computing single random walks of a given length starting at each node in a graph. More precisely, we design FFSB, which given a graph G and a length λ, outputs a single random walk of length λ at each node in G. We will exhibit that the number of MPI iterations and machine time is better than the most efficient algorithm at present with machine time log2 λ (λ is the given walk length). The algorithm with the complexity 0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g}) is optimal among a broad family of algorithms for the problem. Also the empirical evaluation on real-life graph data crawled from Sina micro blog demonstrates that our algorithm is significantly more efficient than all the existing candidates in production parallel programing environment MPI.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose a fast MPI algorithm for Monte Carlo approximation PageRank vector of all the nodes in a graph, named Fast Fibonacci Series-Based Personal PageRank. In the latter paper we will call it FFSB algorithm for short. The basic ideal is very efficiently computing single random walks of a given length starting at each node in a graph. More precisely, we design FFSB, which given a graph G and a length λ, outputs a single random walk of length λ at each node in G. We will exhibit that the number of MPI iterations and machine time is better than the most efficient algorithm at present with machine time log2 λ (λ is the given walk length). The algorithm with the complexity 0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g}) is optimal among a broad family of algorithms for the problem. Also the empirical evaluation on real-life graph data crawled from Sina micro blog demonstrates that our algorithm is significantly more efficient than all the existing candidates in production parallel programing environment MPI.