Multi-Criteria Decision-Making Techniques for Histopathological Image Classification

T. Revathi, S. Saroja, S. Haseena, M. B. B. Pepsi
{"title":"Multi-Criteria Decision-Making Techniques for Histopathological Image Classification","authors":"T. Revathi, S. Saroja, S. Haseena, M. B. B. Pepsi","doi":"10.4018/978-1-5225-6316-7.CH005","DOIUrl":null,"url":null,"abstract":"This chapter presents an overview of methods that have been proposed for analysis of histopathological images. Diagnosing and detecting abnormalities in medical images helps the pathologist in making better decisions. Different machine learning algorithms such as k-nearest neighbor, random forest, support vector machine, ensemble learning, multilayer perceptron, and convolutional neural network are incorporated for carrying out the analysis process. Further, multi-criteria decision-making (MCDM) methods such as SAW, WPM, and TOPSIS are used to improve the efficiency of the decision-making process.","PeriodicalId":104783,"journal":{"name":"Histopathological Image Analysis in Medical Decision Making","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histopathological Image Analysis in Medical Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-6316-7.CH005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This chapter presents an overview of methods that have been proposed for analysis of histopathological images. Diagnosing and detecting abnormalities in medical images helps the pathologist in making better decisions. Different machine learning algorithms such as k-nearest neighbor, random forest, support vector machine, ensemble learning, multilayer perceptron, and convolutional neural network are incorporated for carrying out the analysis process. Further, multi-criteria decision-making (MCDM) methods such as SAW, WPM, and TOPSIS are used to improve the efficiency of the decision-making process.
组织病理图像分类的多准则决策技术
本章概述了已提出的组织病理学图像分析方法。诊断和检测医学图像中的异常有助于病理学家做出更好的决定。不同的机器学习算法,如k近邻、随机森林、支持向量机、集成学习、多层感知器和卷积神经网络被纳入进行分析过程。进一步,采用SAW、WPM、TOPSIS等多准则决策方法提高决策效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信