QSAR study of isonicotinamides derivatives as Alzheimr's disease inhibitors using PLS-R and ANN methods

Abdellah El Aissouq, H. Toufik, F. Lamchouri, Mourad Stitou, A. Ouammou
{"title":"QSAR study of isonicotinamides derivatives as Alzheimr's disease inhibitors using PLS-R and ANN methods","authors":"Abdellah El Aissouq, H. Toufik, F. Lamchouri, Mourad Stitou, A. Ouammou","doi":"10.1109/ISACS48493.2019.9068919","DOIUrl":null,"url":null,"abstract":"The field of artificial intelligence such as artificial neural networks (ANNs) and partial least squares regression (PLS-R) are the methods of choice for quantitative structure activity relationship (QSAR) correlation. Here, we have applied 2D-QSAR approach on a series of isonicotinamides derivatives as Glycogen synthase kinase-3 beta (GSK-3β) inhibitors using PLS-R and ANN methods. The models were generated and validated using a data set of 35 molecules. The best predictive models by PLS-R and ANN gave highly significant square correlation coefficient (r2) values of 0.84 and 0.90 respectively. Based on the results of 2D-QSAR models, GCUT_PEOE_2, h_emd_C, PEOE_VSA_FPPOS, and SlogP_VSA6 are the main descriptors in controlling the activity of the molecules. The developed models could be used to design the new isonicotinamides derivatives with high inhibitory activity against GSK-3β enzyme.","PeriodicalId":312521,"journal":{"name":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACS48493.2019.9068919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The field of artificial intelligence such as artificial neural networks (ANNs) and partial least squares regression (PLS-R) are the methods of choice for quantitative structure activity relationship (QSAR) correlation. Here, we have applied 2D-QSAR approach on a series of isonicotinamides derivatives as Glycogen synthase kinase-3 beta (GSK-3β) inhibitors using PLS-R and ANN methods. The models were generated and validated using a data set of 35 molecules. The best predictive models by PLS-R and ANN gave highly significant square correlation coefficient (r2) values of 0.84 and 0.90 respectively. Based on the results of 2D-QSAR models, GCUT_PEOE_2, h_emd_C, PEOE_VSA_FPPOS, and SlogP_VSA6 are the main descriptors in controlling the activity of the molecules. The developed models could be used to design the new isonicotinamides derivatives with high inhibitory activity against GSK-3β enzyme.
利用PLS-R和ANN方法对异烟碱酰胺衍生物作为阿尔茨海默病抑制剂的QSAR研究
人工智能领域如人工神经网络(ann)和偏最小二乘回归(PLS-R)是定量结构活性关系(QSAR)关联的首选方法。在这里,我们使用PLS-R和ANN方法对一系列异烟碱酰胺衍生物作为糖原合成酶激酶3β (GSK-3β)抑制剂应用2D-QSAR方法。这些模型是用35个分子的数据集生成和验证的。PLS-R和ANN的最佳预测模型均具有极显著的平方相关系数(r2),分别为0.84和0.90。基于2D-QSAR模型的结果,GCUT_PEOE_2、h_emd_C、PEOE_VSA_FPPOS和SlogP_VSA6是控制分子活性的主要描述符。所建立的模型可用于设计对GSK-3β酶具有高抑制活性的异烟酰胺类化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信