Indoor quadrotor state estimation using visual markers

G. Atmeh, I. Ranatunga, D. Popa, K. Subbarao
{"title":"Indoor quadrotor state estimation using visual markers","authors":"G. Atmeh, I. Ranatunga, D. Popa, K. Subbarao","doi":"10.1145/2674396.2674458","DOIUrl":null,"url":null,"abstract":"This paper discusses the problem of estimating the full state-vector (position/orientation) of an AR.Drone quadrotor using measurements from an inertial measurement unit (IMU) and an on-board camera taking images of predefined markers. The platform used is an inexpensive commercial quadrotor. The open-source Robot Operating System (ROS) is used to manage communication with the quadrotor. To estimate the AR.Drone states, an extended Kalman filter is used. The state estimates are propagated using a nonlinear dynamic model of the AR.Drone available in the literature. The estimation error covariance is propagated through the continuous-time Riccati equation using the model Jacobian. The estimated states are updated based on measurements of angular velocity from the IMU along with position and orientation from the camera. Convincing experimental results are presented. The work introduced here allows for an overall inexpensive setup for estimating the states of a quadrotor for flight in GPS denied environments using visual markers.","PeriodicalId":192421,"journal":{"name":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2674396.2674458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper discusses the problem of estimating the full state-vector (position/orientation) of an AR.Drone quadrotor using measurements from an inertial measurement unit (IMU) and an on-board camera taking images of predefined markers. The platform used is an inexpensive commercial quadrotor. The open-source Robot Operating System (ROS) is used to manage communication with the quadrotor. To estimate the AR.Drone states, an extended Kalman filter is used. The state estimates are propagated using a nonlinear dynamic model of the AR.Drone available in the literature. The estimation error covariance is propagated through the continuous-time Riccati equation using the model Jacobian. The estimated states are updated based on measurements of angular velocity from the IMU along with position and orientation from the camera. Convincing experimental results are presented. The work introduced here allows for an overall inexpensive setup for estimating the states of a quadrotor for flight in GPS denied environments using visual markers.
使用视觉标记的室内四旋翼状态估计
本文讨论了利用惯性测量单元(IMU)和机载相机拍摄的预定义标记图像来估计ar无人机四旋翼的完整状态向量(位置/方向)的问题。使用的平台是一个廉价的商业四旋翼。开源机器人操作系统(ROS)用于管理与四旋翼飞行器的通信。为了估计无人机的状态,使用了扩展卡尔曼滤波器。状态估计使用文献中可用的AR.Drone的非线性动态模型进行传播。利用模型雅可比矩阵通过连续时间里卡蒂方程传播估计误差协方差。根据IMU的角速度测量以及相机的位置和方向来更新估计状态。给出了令人信服的实验结果。这里介绍的工作允许在使用视觉标记的GPS拒绝环境中估计四旋翼飞行状态的整体廉价设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信