{"title":"FREE TOPOLOGICAL GROUPS OF METRIZABLE SPACES","authors":"V. Uspenskiĭ","doi":"10.1070/IM1991V037N03ABEH002163","DOIUrl":null,"url":null,"abstract":"The free topological group F(X) of an arbitrary metrizable space X is complete in the Weil sense. If Y is a closed subspace of a metrizable space X, then F(Y) is a topological subgroup of F(X).","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V037N03ABEH002163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89
Abstract
The free topological group F(X) of an arbitrary metrizable space X is complete in the Weil sense. If Y is a closed subspace of a metrizable space X, then F(Y) is a topological subgroup of F(X).