{"title":"A Customized Reinforcement Learning based Binary Offloading in Edge Cloud","authors":"Yuepeng Li, Lvhao Chen, Deze Zeng, Lin Gu","doi":"10.1109/ICPADS51040.2020.00055","DOIUrl":null,"url":null,"abstract":"To tackle the computation resource poorness on the end devices, task offloading is developed to reduce the task completion time and improve the Quality-of-Service (QoS). Edge cloud facilitates such offloading by provisioning resources at the proximity of the end devices. Modern applications are usually deployed as a chain of subtasks (e.g., microservices) where a special offloading strategy, referred as binary offloading, shall be applied. Binary offloading divides the chain into two parts, which will be executed on end device and the edge cloud, respectively. The offloading point in the chain therefore is critical to the QoS in terms of task completion time. Considering the system dynamics and algorithm sensitivity, we apply Q-learning to address this problem. In order to deal with the late feedback problem, a reward rewind match strategy is proposed to customize Q-learning. Trace-driven simulation results show that our customized Q-learning based approach is able to achieve significant reduction on the total execution time, outperforming traditional offloading strategies and non-customized Q-learning.","PeriodicalId":196548,"journal":{"name":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS51040.2020.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
To tackle the computation resource poorness on the end devices, task offloading is developed to reduce the task completion time and improve the Quality-of-Service (QoS). Edge cloud facilitates such offloading by provisioning resources at the proximity of the end devices. Modern applications are usually deployed as a chain of subtasks (e.g., microservices) where a special offloading strategy, referred as binary offloading, shall be applied. Binary offloading divides the chain into two parts, which will be executed on end device and the edge cloud, respectively. The offloading point in the chain therefore is critical to the QoS in terms of task completion time. Considering the system dynamics and algorithm sensitivity, we apply Q-learning to address this problem. In order to deal with the late feedback problem, a reward rewind match strategy is proposed to customize Q-learning. Trace-driven simulation results show that our customized Q-learning based approach is able to achieve significant reduction on the total execution time, outperforming traditional offloading strategies and non-customized Q-learning.