A Customized Reinforcement Learning based Binary Offloading in Edge Cloud

Yuepeng Li, Lvhao Chen, Deze Zeng, Lin Gu
{"title":"A Customized Reinforcement Learning based Binary Offloading in Edge Cloud","authors":"Yuepeng Li, Lvhao Chen, Deze Zeng, Lin Gu","doi":"10.1109/ICPADS51040.2020.00055","DOIUrl":null,"url":null,"abstract":"To tackle the computation resource poorness on the end devices, task offloading is developed to reduce the task completion time and improve the Quality-of-Service (QoS). Edge cloud facilitates such offloading by provisioning resources at the proximity of the end devices. Modern applications are usually deployed as a chain of subtasks (e.g., microservices) where a special offloading strategy, referred as binary offloading, shall be applied. Binary offloading divides the chain into two parts, which will be executed on end device and the edge cloud, respectively. The offloading point in the chain therefore is critical to the QoS in terms of task completion time. Considering the system dynamics and algorithm sensitivity, we apply Q-learning to address this problem. In order to deal with the late feedback problem, a reward rewind match strategy is proposed to customize Q-learning. Trace-driven simulation results show that our customized Q-learning based approach is able to achieve significant reduction on the total execution time, outperforming traditional offloading strategies and non-customized Q-learning.","PeriodicalId":196548,"journal":{"name":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS51040.2020.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To tackle the computation resource poorness on the end devices, task offloading is developed to reduce the task completion time and improve the Quality-of-Service (QoS). Edge cloud facilitates such offloading by provisioning resources at the proximity of the end devices. Modern applications are usually deployed as a chain of subtasks (e.g., microservices) where a special offloading strategy, referred as binary offloading, shall be applied. Binary offloading divides the chain into two parts, which will be executed on end device and the edge cloud, respectively. The offloading point in the chain therefore is critical to the QoS in terms of task completion time. Considering the system dynamics and algorithm sensitivity, we apply Q-learning to address this problem. In order to deal with the late feedback problem, a reward rewind match strategy is proposed to customize Q-learning. Trace-driven simulation results show that our customized Q-learning based approach is able to achieve significant reduction on the total execution time, outperforming traditional offloading strategies and non-customized Q-learning.
基于自定义强化学习的边缘云二进制卸载
为了解决终端设备计算资源不足的问题,提出了任务卸载技术,以减少任务完成时间,提高服务质量(QoS)。边缘云通过在终端设备附近提供资源来促进这种卸载。现代应用程序通常被部署为一个子任务链(例如,微服务),其中应应用一种特殊的卸载策略,称为二进制卸载。二进制卸载将链分成两部分,分别在终端设备和边缘云上执行。因此,就任务完成时间而言,链中的卸载点对QoS至关重要。考虑到系统动力学和算法的敏感性,我们采用q学习来解决这个问题。为了解决后期反馈问题,提出了一种自定义q学习的奖励倒带匹配策略。跟踪驱动仿真结果表明,基于自定义q学习的方法能够显著减少总执行时间,优于传统的卸载策略和非自定义q学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信