Tissue ischemia monitoring using impedance spectroscopy: evaluation of neural networks for ischemia estimation

J. Songer, S. Kun, S. Makarov
{"title":"Tissue ischemia monitoring using impedance spectroscopy: evaluation of neural networks for ischemia estimation","authors":"J. Songer, S. Kun, S. Makarov","doi":"10.1109/NEBC.2001.924697","DOIUrl":null,"url":null,"abstract":"Tissue impedance spectra and pH values, collected during ischemic episodes in human skeletal muscle, were used to train and test Artificial Neural Networks (NN) for ischemia level estimation. The goal was to determine the NN with optimal performance in classifying impedance spectra and their corresponding pH values when varying levels of noise were introduced to the original signal. The performance of two linear associative memory NNs (Hebbian and ADALINE) and the backpropagation (BP) NN were evaluated using impedance spectra in the frequency range from 25 Hz-500 kHz as inputs and the pH values as outputs. Results indicate that a BP NN with a single hidden layer and moderate numbers of neurons is an optimal solution for the authors' research.","PeriodicalId":269364,"journal":{"name":"Proceedings of the IEEE 27th Annual Northeast Bioengineering Conference (Cat. No.01CH37201)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 27th Annual Northeast Bioengineering Conference (Cat. No.01CH37201)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBC.2001.924697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Tissue impedance spectra and pH values, collected during ischemic episodes in human skeletal muscle, were used to train and test Artificial Neural Networks (NN) for ischemia level estimation. The goal was to determine the NN with optimal performance in classifying impedance spectra and their corresponding pH values when varying levels of noise were introduced to the original signal. The performance of two linear associative memory NNs (Hebbian and ADALINE) and the backpropagation (BP) NN were evaluated using impedance spectra in the frequency range from 25 Hz-500 kHz as inputs and the pH values as outputs. Results indicate that a BP NN with a single hidden layer and moderate numbers of neurons is an optimal solution for the authors' research.
用阻抗谱监测组织缺血:评估神经网络对缺血的估计
在人体骨骼肌缺血发作时收集组织阻抗谱和pH值,用于训练和测试人工神经网络(NN)来估计缺血水平。目标是在原始信号中引入不同程度的噪声时,确定具有最佳阻抗谱分类性能的神经网络及其相应的pH值。以25 Hz-500 kHz频率范围内的阻抗谱作为输入,pH值作为输出,对两种线性联想记忆神经网络(Hebbian和ADALINE)和反向传播(BP)神经网络的性能进行了评估。结果表明,单隐层、神经元数量适中的BP神经网络是本文研究的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信