A new approach to gene prediction using the self-organizing map

Shaun Mahony, Terry J. Smith, J. McInerney, A. Golden
{"title":"A new approach to gene prediction using the self-organizing map","authors":"Shaun Mahony, Terry J. Smith, J. McInerney, A. Golden","doi":"10.1109/CSB.2003.1227365","DOIUrl":null,"url":null,"abstract":"In this poster we present a gene prediction approach based on the self-organizing map that has the ability to automatically identify all the major patterns of content variation within a genome. The genome may then be scanned for regions displaying the same properties as one of these automatically identified models. Even using a relatively simple coding measure (codon usage), this method can predict the location of protein-coding sequences with a reasonably high accuracy. We also show other advantages of the approach, such as the ability to indicate genes that contain frame-shifts. We believe that this method has the potential to become a useful addition to the genome annotation process.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this poster we present a gene prediction approach based on the self-organizing map that has the ability to automatically identify all the major patterns of content variation within a genome. The genome may then be scanned for regions displaying the same properties as one of these automatically identified models. Even using a relatively simple coding measure (codon usage), this method can predict the location of protein-coding sequences with a reasonably high accuracy. We also show other advantages of the approach, such as the ability to indicate genes that contain frame-shifts. We believe that this method has the potential to become a useful addition to the genome annotation process.
利用自组织图谱进行基因预测的新方法
在这张海报中,我们提出了一种基于自组织图谱的基因预测方法,该方法具有自动识别基因组内所有主要内容变异模式的能力。然后可以扫描基因组,寻找与这些自动识别模型之一显示相同特性的区域。即使使用相对简单的编码测量(密码子使用),该方法也能以相当高的准确度预测蛋白质编码序列的位置。我们还展示了该方法的其他优点,例如能够指示包含帧移位的基因。我们相信这种方法有潜力成为基因组注释过程中有用的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信