Artificial neural network for detection of asynchronous state

P. Kostyła
{"title":"Artificial neural network for detection of asynchronous state","authors":"P. Kostyła","doi":"10.1109/EEEIC.2010.5489953","DOIUrl":null,"url":null,"abstract":"An asynchronous state of a synchronic machine may be identified through determining the amplitudes of particular components of stator's current provided that a constant slip value is assumed. Following a synchronism loss, this adopted value is assumed to be achieved and, for sure, exceeded. New parallel algorithms for detection of asynchronous state of synchronic machines, are proposed. The algorithms can be implemented by analogue adaptive circuits employing some neural networks principles. This chapter provides a description of artificial neural networks realising this task, whose operation algorithm is based on minimum square error criteria and maximum loss method.","PeriodicalId":197298,"journal":{"name":"2010 9th International Conference on Environment and Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 9th International Conference on Environment and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2010.5489953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An asynchronous state of a synchronic machine may be identified through determining the amplitudes of particular components of stator's current provided that a constant slip value is assumed. Following a synchronism loss, this adopted value is assumed to be achieved and, for sure, exceeded. New parallel algorithms for detection of asynchronous state of synchronic machines, are proposed. The algorithms can be implemented by analogue adaptive circuits employing some neural networks principles. This chapter provides a description of artificial neural networks realising this task, whose operation algorithm is based on minimum square error criteria and maximum loss method.
异步状态的人工神经网络检测
只要假定滑动值恒定,就可以通过确定定子电流的特定分量的幅值来确定同步电机的异步状态。在同步丢失之后,假定达到并肯定超过了所采用的值。提出了一种用于同步电机异步状态检测的并行算法。这些算法可以通过采用神经网络原理的模拟自适应电路来实现。本章描述了实现该任务的人工神经网络,其运算算法基于最小平方误差准则和最大损失法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信