A Review on Evolving Interval and Fuzzy Granular Systems

D. Leite, P. Costa, F. Gomide
{"title":"A Review on Evolving Interval and Fuzzy Granular Systems","authors":"D. Leite, P. Costa, F. Gomide","doi":"10.21528/LNLM-VOL14-NO2-ART3","DOIUrl":null,"url":null,"abstract":"This article provides definitions and principles of granular computing and discusses the generation and online adaptation of rule-based models from data streams. Essential notions of interval analysis and fuzzy sets are addressed from the granular computing point of view. The article also covers different types of aggregation operators which perform information fusion by gathering large volumes of dissimilar information into a more compact form. We briefly summarize the main historical landmarks of evolving intelligent systems leading to the state of the art. Evolving granular systems extend evolving intelligent systems allowing data, variables and parameters to be granules (intervals and fuzzy sets). The aim of the evolution of granular systems is to fit the information carried by data streams from time-varying processes into rule-based models and, at the same time, provide granular approximation of functions and linguistic description of the system behavior.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"14 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/LNLM-VOL14-NO2-ART3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides definitions and principles of granular computing and discusses the generation and online adaptation of rule-based models from data streams. Essential notions of interval analysis and fuzzy sets are addressed from the granular computing point of view. The article also covers different types of aggregation operators which perform information fusion by gathering large volumes of dissimilar information into a more compact form. We briefly summarize the main historical landmarks of evolving intelligent systems leading to the state of the art. Evolving granular systems extend evolving intelligent systems allowing data, variables and parameters to be granules (intervals and fuzzy sets). The aim of the evolution of granular systems is to fit the information carried by data streams from time-varying processes into rule-based models and, at the same time, provide granular approximation of functions and linguistic description of the system behavior.
演化区间模糊颗粒系统研究进展
本文提供了粒度计算的定义和原理,并讨论了从数据流生成和在线适应基于规则的模型。区间分析和模糊集的基本概念从颗粒计算的角度进行了讨论。本文还涉及不同类型的聚合算子的执行信息融合通过收集大量不同的信息变成一个更紧凑的形式。我们简要地总结了发展智能系统的主要历史标志。进化的颗粒系统扩展了进化的智能系统,允许数据、变量和参数成为颗粒(区间和模糊集)。颗粒系统演化的目的是将时变过程的数据流所携带的信息拟合到基于规则的模型中,同时提供函数的颗粒近似和系统行为的语言描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信