Automatic correction of annotation boundaries in activity datasets by class separation maximization

Reuben Kirkham, Aftab Khan, S. Bhattacharya, Nils Y. Hammerla, Sebastian Mellor, D. Roggen, T. Plötz
{"title":"Automatic correction of annotation boundaries in activity datasets by class separation maximization","authors":"Reuben Kirkham, Aftab Khan, S. Bhattacharya, Nils Y. Hammerla, Sebastian Mellor, D. Roggen, T. Plötz","doi":"10.1145/2494091.2495988","DOIUrl":null,"url":null,"abstract":"t is challenging to precisely identify the boundary of activities in order to annotate the activity datasets required to train activity recognition systems. This is the case for experts, as well as non-experts who may be recruited for crowd-sourcing paradigms to reduce the annotation effort or speed up the process by distributing the task over multiple annotators. We present a method to automatically adjust annotation boundaries, presuming a correct annotation label, but imprecise boundaries, otherwise known as \"label jitter\". The approach maximizes the Fukunaga Class-Separability, applied to time series. Evaluations on a standard benchmark dataset showed statistically significant improvements from the initial jittery annotations.","PeriodicalId":220524,"journal":{"name":"Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2494091.2495988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

t is challenging to precisely identify the boundary of activities in order to annotate the activity datasets required to train activity recognition systems. This is the case for experts, as well as non-experts who may be recruited for crowd-sourcing paradigms to reduce the annotation effort or speed up the process by distributing the task over multiple annotators. We present a method to automatically adjust annotation boundaries, presuming a correct annotation label, but imprecise boundaries, otherwise known as "label jitter". The approach maximizes the Fukunaga Class-Separability, applied to time series. Evaluations on a standard benchmark dataset showed statistically significant improvements from the initial jittery annotations.
基于类分离最大化的活动数据集标注边界自动校正
为了对训练活动识别系统所需的活动数据集进行注释,精确地识别活动的边界是一项挑战。对于专家和非专家来说都是如此,他们可能会被招募到众包范例中,以减少注释工作或通过将任务分配给多个注释者来加快过程。我们提出了一种自动调整标注边界的方法,假设标注标签正确,但边界不精确,否则称为“标签抖动”。该方法最大限度地提高了福永类可分性,应用于时间序列。对标准基准数据集的评估显示,与最初的抖动注释相比,统计上有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信