Optasia: A Relational Platform for Efficient Large-Scale Video Analytics

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula
{"title":"Optasia: A Relational Platform for Efficient Large-Scale Video Analytics","authors":"Yao Lu, Aakanksha Chowdhery, Srikanth Kandula","doi":"10.1145/2987550.2987564","DOIUrl":null,"url":null,"abstract":"Camera deployments are ubiquitous, but existing methods to analyze video feeds do not scale and are error-prone. We describe Optasia, a dataflow system that employs relational query optimization to efficiently process queries on video feeds from many cameras. Key gains of Optasia result from modularizing vision pipelines in such a manner that relational query optimization can be applied. Specifically, Optasia can (i) de-duplicate the work of common modules, (ii) auto-parallelize the query plans based on the video input size, number of cameras and operation complexity, (iii) offers chunk-level parallelism that allows multiple tasks to process the feed of a single camera. Evaluation on traffic videos from a large city on complex vision queries shows high accuracy with many fold improvements in query completion time and resource usage relative to existing systems.","PeriodicalId":362207,"journal":{"name":"Proceedings of the Seventh ACM Symposium on Cloud Computing","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987550.2987564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

Camera deployments are ubiquitous, but existing methods to analyze video feeds do not scale and are error-prone. We describe Optasia, a dataflow system that employs relational query optimization to efficiently process queries on video feeds from many cameras. Key gains of Optasia result from modularizing vision pipelines in such a manner that relational query optimization can be applied. Specifically, Optasia can (i) de-duplicate the work of common modules, (ii) auto-parallelize the query plans based on the video input size, number of cameras and operation complexity, (iii) offers chunk-level parallelism that allows multiple tasks to process the feed of a single camera. Evaluation on traffic videos from a large city on complex vision queries shows high accuracy with many fold improvements in query completion time and resource usage relative to existing systems.
Optasia:高效大规模视频分析的关系平台
摄像机部署无处不在,但现有的分析视频馈送的方法无法扩展,而且容易出错。我们描述了Optasia,一个数据流系统,它采用关系查询优化来有效地处理来自许多摄像机的视频提要的查询。Optasia的主要收益来自于视觉管道的模块化,这种方式可以应用关系查询优化。具体来说,Optasia可以(i)消除常见模块的重复工作,(ii)根据视频输入大小,摄像机数量和操作复杂性自动并行化查询计划,(iii)提供块级并行性,允许多个任务处理单个摄像机的馈送。对大型城市交通视频的复杂视觉查询进行了评估,结果表明,与现有系统相比,查询完成时间和资源利用率提高了许多倍,准确率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信