Non-Unit Bidiagonal Matrices for Factorization of Vandermonde Matrices

R. Nair
{"title":"Non-Unit Bidiagonal Matrices for Factorization of Vandermonde Matrices","authors":"R. Nair","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.12.1","DOIUrl":null,"url":null,"abstract":"A non-unit bidiagonal matrix and its inverse with simple structures are introduced. These matrices can be constructed easily using the entries of a given non-zero vector without any computations among the entries. The matrix transforms the given vector to a column of the identity matrix. The given vector can be computed back without any round off error using the inverse matrix. Since a Vandermonde matrix can also be constructed using given n quantities, it is established in this paper that Vandermonde matrices can be factorized in a simple way by applying these bidiagonal matrices. Also it is demonstrated that factors of Vandermonde and inverse Vandermonde matrices can be conveniently presented using the matrices introduced here.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.12.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A non-unit bidiagonal matrix and its inverse with simple structures are introduced. These matrices can be constructed easily using the entries of a given non-zero vector without any computations among the entries. The matrix transforms the given vector to a column of the identity matrix. The given vector can be computed back without any round off error using the inverse matrix. Since a Vandermonde matrix can also be constructed using given n quantities, it is established in this paper that Vandermonde matrices can be factorized in a simple way by applying these bidiagonal matrices. Also it is demonstrated that factors of Vandermonde and inverse Vandermonde matrices can be conveniently presented using the matrices introduced here.
Vandermonde矩阵分解的非单位双对角矩阵
介绍了一类结构简单的非单位双对角矩阵及其逆矩阵。这些矩阵可以很容易地使用给定的非零向量的元素来构造,而不需要在这些元素之间进行任何计算。矩阵将给定的向量变换成单位矩阵的一列。给定的向量可以用逆矩阵计算回来,没有任何舍入误差。由于Vandermonde矩阵也可以用给定的n个量来构造,因此本文证明了利用这些双对角矩阵可以简单地分解Vandermonde矩阵。还证明了Vandermonde矩阵的因子和逆Vandermonde矩阵的因子可以用这里介绍的矩阵方便地表示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信