{"title":"Class Based Sense Definition Model for Word Sense Tagging and Disambiguation","authors":"Tracy Lin, Jason J. S. Chang","doi":"10.3115/1119250.1119252","DOIUrl":null,"url":null,"abstract":"We present an unsupervised learning strategy for word sense disambiguation (WSD) that exploits multiple linguistic resources including a parallel corpus, a bilingual machine readable dictionary, and a thesaurus. The approach is based on Class Based Sense Definition Model (CBSDM) that generates the glosses and translations for a class of word senses. The model can be applied to resolve sense ambiguity for words in a parallel corpus. That sense tagging procedure, in effect, produces a semantic bilingual concordance, which can be used to train WSD systems for the two languages involved. Experimental results show that CBSDM trained on Longman Dictionary of Contemporary English, English-Chinese Edition (LDOCE E-C) and Longman Lexicon of Contemporary English (LLOCE) is very effectively in turning a Chinese-English parallel corpus into sense tagged data for development of WSD systems.","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present an unsupervised learning strategy for word sense disambiguation (WSD) that exploits multiple linguistic resources including a parallel corpus, a bilingual machine readable dictionary, and a thesaurus. The approach is based on Class Based Sense Definition Model (CBSDM) that generates the glosses and translations for a class of word senses. The model can be applied to resolve sense ambiguity for words in a parallel corpus. That sense tagging procedure, in effect, produces a semantic bilingual concordance, which can be used to train WSD systems for the two languages involved. Experimental results show that CBSDM trained on Longman Dictionary of Contemporary English, English-Chinese Edition (LDOCE E-C) and Longman Lexicon of Contemporary English (LLOCE) is very effectively in turning a Chinese-English parallel corpus into sense tagged data for development of WSD systems.