Worst-Case Latency Performance Of Load Balancing Through Distributed Waterfilling Algorithm

Jiangnan Cheng, Shih-Hao Tseng, A. Tang
{"title":"Worst-Case Latency Performance Of Load Balancing Through Distributed Waterfilling Algorithm","authors":"Jiangnan Cheng, Shih-Hao Tseng, A. Tang","doi":"10.1109/CISS.2019.8692917","DOIUrl":null,"url":null,"abstract":"Intelligent-meshed mobile edge computing (IMMEC) network puts great emphasis on providing low latency services. This naturally requires using fast-timescale load balancing to avoid excessive delay resulted from overloading any particular network node. One natural candidate solution for such load balancing is distributed waterfilling algorithm. In this paper, we analyze its performance by comparing it against an ideal centralized version. It is shown that the worst-case average total latency difference between the two algorithms grows linearly with the size of the network and the propagation delay among different nodes.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent-meshed mobile edge computing (IMMEC) network puts great emphasis on providing low latency services. This naturally requires using fast-timescale load balancing to avoid excessive delay resulted from overloading any particular network node. One natural candidate solution for such load balancing is distributed waterfilling algorithm. In this paper, we analyze its performance by comparing it against an ideal centralized version. It is shown that the worst-case average total latency difference between the two algorithms grows linearly with the size of the network and the propagation delay among different nodes.
分布式充水算法负载均衡的最坏延时性能研究
智能网格移动边缘计算(IMMEC)网络非常重视提供低延迟服务。这自然需要使用快速时间尺度负载平衡,以避免任何特定网络节点过载导致的过度延迟。这种负载平衡的一个自然候选解决方案是分布式注水算法。在本文中,我们通过将其与理想的集中式版本进行比较来分析其性能。结果表明,两种算法的最坏情况平均总延迟差随网络规模和不同节点间的传播延迟线性增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信