A self-tuning EWMA controller utilizing artificial neural network function approximation techniques

T. Smith, D. Boning
{"title":"A self-tuning EWMA controller utilizing artificial neural network function approximation techniques","authors":"T. Smith, D. Boning","doi":"10.1109/IEMT.1996.559755","DOIUrl":null,"url":null,"abstract":"Recent works have shown that an exponentially weighted moving average (EWMA) controller can be used on semiconductor processes to maintain process targets over extended periods for improved product quality and decreased machine downtime. Proper choice of controller parameters (EWMA weights) is critical to the performance of this system. This work examines how different process factors affect the optimal controller parameters. We show that a function mapping from the disturbance state (magnitude of linear drift and random noise) of a given process to the corresponding optimal EWMA weights can be generated, and an artificial neural network (ANN) trained to learn the mapping. A self-tuning EWMA controller is proposed which dynamically updates its controller parameters by estimating the disturbance state and using the ANN function mapping to provide updates to the controller parameters. The result is an adaptive controller which eliminates the need for an experienced engineer to tune the controller, thereby allowing it to be more easily applied to semiconductor processes.","PeriodicalId":177653,"journal":{"name":"Nineteenth IEEE/CPMT International Electronics Manufacturing Technology Symposium","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nineteenth IEEE/CPMT International Electronics Manufacturing Technology Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.1996.559755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Recent works have shown that an exponentially weighted moving average (EWMA) controller can be used on semiconductor processes to maintain process targets over extended periods for improved product quality and decreased machine downtime. Proper choice of controller parameters (EWMA weights) is critical to the performance of this system. This work examines how different process factors affect the optimal controller parameters. We show that a function mapping from the disturbance state (magnitude of linear drift and random noise) of a given process to the corresponding optimal EWMA weights can be generated, and an artificial neural network (ANN) trained to learn the mapping. A self-tuning EWMA controller is proposed which dynamically updates its controller parameters by estimating the disturbance state and using the ANN function mapping to provide updates to the controller parameters. The result is an adaptive controller which eliminates the need for an experienced engineer to tune the controller, thereby allowing it to be more easily applied to semiconductor processes.
利用人工神经网络函数逼近技术的自整定EWMA控制器
最近的研究表明,指数加权移动平均(EWMA)控制器可用于半导体工艺,以在较长时间内维持工艺目标,以提高产品质量并减少机器停机时间。控制器参数(EWMA权值)的合理选择对系统的性能至关重要。这项工作考察了不同的过程因素如何影响最优控制器参数。我们证明了从给定过程的扰动状态(线性漂移和随机噪声的大小)到相应的最优EWMA权重的函数映射可以生成,并且可以训练人工神经网络(ANN)来学习该映射。提出了一种自整定EWMA控制器,该控制器通过估计扰动状态,利用神经网络函数映射对控制器参数进行动态更新。结果是一个自适应控制器,消除了经验丰富的工程师调整控制器的需要,从而使其更容易应用于半导体工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信