{"title":"Air violin: a machine learning approach to fingering gesture recognition","authors":"D. Dalmazzo, R. Ramírez","doi":"10.1145/3139513.3139526","DOIUrl":null,"url":null,"abstract":"We train and evaluate two machine learning models for predicting fingering in violin performances using motion and EMG sensors integrated in the Myo device. Our aim is twofold: first, provide a fingering recognition model in the context of a gamification virtual violin application where we measure both right hand (i.e. bow) and left hand (i.e. fingering) gestures, and second, implement a tracking system for a computer assisted pedagogical tool for self-regulated learners in high-level music education. Our approach is based on the principle of mapping-by-demonstration in which the model is trained by the performer. We evaluated a model based on Decision Trees and compared it with a Hidden Markovian Model.","PeriodicalId":441030,"journal":{"name":"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139513.3139526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
We train and evaluate two machine learning models for predicting fingering in violin performances using motion and EMG sensors integrated in the Myo device. Our aim is twofold: first, provide a fingering recognition model in the context of a gamification virtual violin application where we measure both right hand (i.e. bow) and left hand (i.e. fingering) gestures, and second, implement a tracking system for a computer assisted pedagogical tool for self-regulated learners in high-level music education. Our approach is based on the principle of mapping-by-demonstration in which the model is trained by the performer. We evaluated a model based on Decision Trees and compared it with a Hidden Markovian Model.