A. Bette, Patrick Brus, G. Balázs, Matthias Ludwig, Alois Knoll
{"title":"Automated Defect Inspection in Reverse Engineering of Integrated Circuits","authors":"A. Bette, Patrick Brus, G. Balázs, Matthias Ludwig, Alois Knoll","doi":"10.1109/WACV51458.2022.00187","DOIUrl":null,"url":null,"abstract":"In the semiconductor industry, reverse engineering is used to extract information from microchips. Circuit extraction is becoming increasingly difficult due to the continuous technology shrinking. A high quality reverse engineering process is challenged by various defects coming from chip preparation and imaging errors. Currently, no automated, technology-agnostic defect inspection framework is available. To meet the requirements of the mostly manual reverse engineering process, the proposed automated frame- work needs to handle highly imbalanced data, as well as unknown and multiple defect classes. We propose a network architecture that is composed of a shared Xception- based feature extractor and multiple, individually trainable binary classification heads: the HydREnet. We evaluated our defect classifier on three challenging industrial datasets and achieved accuracies of over 85 %, even for underrepresented classes. With this framework, the manual inspection effort can be reduced down to 5 %.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In the semiconductor industry, reverse engineering is used to extract information from microchips. Circuit extraction is becoming increasingly difficult due to the continuous technology shrinking. A high quality reverse engineering process is challenged by various defects coming from chip preparation and imaging errors. Currently, no automated, technology-agnostic defect inspection framework is available. To meet the requirements of the mostly manual reverse engineering process, the proposed automated frame- work needs to handle highly imbalanced data, as well as unknown and multiple defect classes. We propose a network architecture that is composed of a shared Xception- based feature extractor and multiple, individually trainable binary classification heads: the HydREnet. We evaluated our defect classifier on three challenging industrial datasets and achieved accuracies of over 85 %, even for underrepresented classes. With this framework, the manual inspection effort can be reduced down to 5 %.