Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, Xiansheng Hua
{"title":"Large-scale vehicle trajectory reconstruction with camera sensing network","authors":"Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, Xiansheng Hua","doi":"10.1145/3447993.3448617","DOIUrl":null,"url":null,"abstract":"Vehicle trajectories provide essential information to understand the urban mobility and benefit a wide range of urban applications. State-of-the-art solutions for vehicle sensing may not build accurate and complete knowledge of all vehicle trajectories. In order to fill the gap, this paper proposes VeTrac, a comprehensive system that employs widely deployed traffic cameras as a sensing network to trace vehicle movements and reconstruct their trajectories in a large scale. VeTrac fuses mobility correlation and vision-based analysis to reduce uncertainties in identifying vehicles. A graph convolution process is employed to maintain the identity consistency across different camera observations, and a self-training process is invoked when aligning with the urban road network to reconstruct vehicle trajectories with confidence. Extensive experiments with real-world data input of over 7 million vehicle snapshots from over one thousand traffic cameras demonstrate that VeTrac achieves 98% accuracy for simple expressway scenario and 89% accuracy for complex urban environment. The achieved accuracy outperforms alternative solutions by 32% for expressway scenario and by 59% for complex urban environment.","PeriodicalId":177431,"journal":{"name":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447993.3448617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Vehicle trajectories provide essential information to understand the urban mobility and benefit a wide range of urban applications. State-of-the-art solutions for vehicle sensing may not build accurate and complete knowledge of all vehicle trajectories. In order to fill the gap, this paper proposes VeTrac, a comprehensive system that employs widely deployed traffic cameras as a sensing network to trace vehicle movements and reconstruct their trajectories in a large scale. VeTrac fuses mobility correlation and vision-based analysis to reduce uncertainties in identifying vehicles. A graph convolution process is employed to maintain the identity consistency across different camera observations, and a self-training process is invoked when aligning with the urban road network to reconstruct vehicle trajectories with confidence. Extensive experiments with real-world data input of over 7 million vehicle snapshots from over one thousand traffic cameras demonstrate that VeTrac achieves 98% accuracy for simple expressway scenario and 89% accuracy for complex urban environment. The achieved accuracy outperforms alternative solutions by 32% for expressway scenario and by 59% for complex urban environment.