Application of Multi-Objective optimization algorithm and Artificial Neural Networks at machining process

F. Jafarian, H. Amirabadi, J. Sadri
{"title":"Application of Multi-Objective optimization algorithm and Artificial Neural Networks at machining process","authors":"F. Jafarian, H. Amirabadi, J. Sadri","doi":"10.1109/PRIA.2013.6528449","DOIUrl":null,"url":null,"abstract":"Since, experimentally investigation of machining processes is difficult and costly, the problem becomes more difficult if the aim is simultaneously optimization of the machining outputs. This paper presents a novel hybrid method based on the Artificial Neural networks (ANNs), Multi-Objective Optimization (MOO) and Finite Element Method (FEM) for evaluation of thermo-mechanical loads during turning process. After calibrating controllable parameters of simulation by comparison between FE results and experimental results of literature, the results of FE simulation were employed for training neural networks by Genetic algorithm. Finally, the functions implemented by neural networks were considered as objective functions of Non-Dominated Genetic Algorithm (NSGA-II) and optimal non-dominated solution set were determined at the different states of thermo-mechanical loads. Comparison between obtained results of NSGA-II and predicted results of FE simulation showed that, developed hybrid technique of FEM-ANN-MOO in this study provides a robust framework for manufacturing processes.","PeriodicalId":370476,"journal":{"name":"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2013.6528449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Since, experimentally investigation of machining processes is difficult and costly, the problem becomes more difficult if the aim is simultaneously optimization of the machining outputs. This paper presents a novel hybrid method based on the Artificial Neural networks (ANNs), Multi-Objective Optimization (MOO) and Finite Element Method (FEM) for evaluation of thermo-mechanical loads during turning process. After calibrating controllable parameters of simulation by comparison between FE results and experimental results of literature, the results of FE simulation were employed for training neural networks by Genetic algorithm. Finally, the functions implemented by neural networks were considered as objective functions of Non-Dominated Genetic Algorithm (NSGA-II) and optimal non-dominated solution set were determined at the different states of thermo-mechanical loads. Comparison between obtained results of NSGA-II and predicted results of FE simulation showed that, developed hybrid technique of FEM-ANN-MOO in this study provides a robust framework for manufacturing processes.
多目标优化算法和人工神经网络在加工过程中的应用
由于加工过程的实验研究是困难和昂贵的,如果目标是同时优化加工输出,问题变得更加困难。提出了一种基于人工神经网络(ann)、多目标优化(MOO)和有限元法(FEM)的车削过程热机械载荷评估新方法。将有限元结果与文献实验结果进行对比,标定仿真可控参数后,利用有限元仿真结果进行遗传算法训练神经网络。最后,将神经网络实现的函数作为非支配遗传算法(NSGA-II)的目标函数,确定了热机械负荷不同状态下的最优非支配解集。NSGA-II仿真结果与有限元仿真预测结果的对比表明,本研究开发的FEM-ANN-MOO混合技术为制造工艺提供了稳健的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信