Log-moment estimators for the generalized Linnik and Mittag-Leffler distributions with applications to financial modeling

Dexter O. Cahoy, Wojbor A. Woyczy'nski
{"title":"Log-moment estimators for the generalized Linnik and Mittag-Leffler distributions with applications to financial modeling","authors":"Dexter O. Cahoy, Wojbor A. Woyczy'nski","doi":"10.3844/jmssp.2018.156.166","DOIUrl":null,"url":null,"abstract":"We propose formal estimation procedures for the parameters of the generalized, three-parameter Linnik $gL(\\alpha,\\mu, \\delta)$ and Mittag-Leffler $gML(\\alpha,\\mu, \\delta)$ distributions. The estimators are derived from the moments of the log-transformed random variables, and are shown to be asymptotically unbiased. The estimation algorithms are computationally efficient and the proposed procedures are tested using the daily S\\&P 500 and Dow Jones index data. The results show that the standard two-parameter Linnik and Mittag-Leffler models are not flexible enough to accurately model the current stock market data.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2018.156.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose formal estimation procedures for the parameters of the generalized, three-parameter Linnik $gL(\alpha,\mu, \delta)$ and Mittag-Leffler $gML(\alpha,\mu, \delta)$ distributions. The estimators are derived from the moments of the log-transformed random variables, and are shown to be asymptotically unbiased. The estimation algorithms are computationally efficient and the proposed procedures are tested using the daily S\&P 500 and Dow Jones index data. The results show that the standard two-parameter Linnik and Mittag-Leffler models are not flexible enough to accurately model the current stock market data.
广义Linnik和Mittag-Leffler分布的对数矩估计及其在金融建模中的应用
我们提出了广义的三参数Linnik $gL(\alpha,\mu, \delta)$和Mittag-Leffler $gML(\alpha,\mu, \delta)$分布参数的形式化估计程序。估计量由对数变换的随机变量的矩导出,并被证明是渐近无偏的。估计算法计算效率高,所提出的程序使用每日标准普尔500指数和道琼斯指数数据进行了测试。结果表明,标准的双参数Linnik和Mittag-Leffler模型不够灵活,无法准确地模拟当前的股市数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信