Investigation of Two-Stage Load Forecasting to Minimize Error Residuals

Mitch Campion, A. S. Nair, Anupam Mukherjee, D. Hollingworth, P. Ranganathan
{"title":"Investigation of Two-Stage Load Forecasting to Minimize Error Residuals","authors":"Mitch Campion, A. S. Nair, Anupam Mukherjee, D. Hollingworth, P. Ranganathan","doi":"10.1109/EIT.2018.8500094","DOIUrl":null,"url":null,"abstract":"This paper discusses preliminary results obtained using a two-stage forecasting method for PJM Interconnection data sets. In stage 1, autoregressive integrated moving average (ARIMA) was deployed, and in stage 2, residuals from stage 1 was fed as an input to exponential smoothing (ES) method. The data contained demand values from 11 regions of PJM Interconnection. The datasets used to predict day-ahead demand values are both in 24-hour and 30-day format for 2016 calendar year. The accuracy of forecasting is evaluated using Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) parameters. An economic dispatch was then carried using a linear programming formulation in Algebraic Mathematical Programming Language (AMPL) environment. The preliminary results indicate two stage process of ARIMA with ES and ARIMA with ARIMA outperforms one-stage application for this data set.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses preliminary results obtained using a two-stage forecasting method for PJM Interconnection data sets. In stage 1, autoregressive integrated moving average (ARIMA) was deployed, and in stage 2, residuals from stage 1 was fed as an input to exponential smoothing (ES) method. The data contained demand values from 11 regions of PJM Interconnection. The datasets used to predict day-ahead demand values are both in 24-hour and 30-day format for 2016 calendar year. The accuracy of forecasting is evaluated using Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) parameters. An economic dispatch was then carried using a linear programming formulation in Algebraic Mathematical Programming Language (AMPL) environment. The preliminary results indicate two stage process of ARIMA with ES and ARIMA with ARIMA outperforms one-stage application for this data set.
误差残差最小的两阶段负荷预测研究
本文讨论了PJM互连数据集的两阶段预测方法的初步结果。在阶段1中,部署了自回归积分移动平均(ARIMA),在阶段2中,将阶段1的残差作为指数平滑(ES)方法的输入。数据包含了PJM互联的11个地区的需求值。用于预测前一天需求值的数据集是2016日历年的24小时和30天格式。采用平均绝对百分比误差(MAPE)和平均绝对偏差(MAD)参数评价预测的准确性。然后在代数数学规划语言(AMPL)环境下使用线性规划公式进行经济调度。初步结果表明,在该数据集上,采用ES的ARIMA两阶段过程和采用ARIMA的ARIMA两阶段过程优于单阶段应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信