Black Box Modeling of Steam Distillation Essential Oil Extraction System Using NNARX Structure

M. Rahiman, M. Taib, Y.M. Salleh
{"title":"Black Box Modeling of Steam Distillation Essential Oil Extraction System Using NNARX Structure","authors":"M. Rahiman, M. Taib, Y.M. Salleh","doi":"10.1109/ACIIDS.2009.95","DOIUrl":null,"url":null,"abstract":"This paper evaluates the Neural Network AutoRegressive with eXogenous (NNARX) structure in modeling the steam distillation essential oil extraction. The model order will be selected based on Rissanen’s Minimum Description Length (MDL) information criterion. In the training of NNARX model, both unregularized and regularized models will be assessed. There are three regularization levels of the weight decay that will be implemented in this work. The number of hidden neuron and iteration will be optimized before the training session. The testing of the trained model will be based on R2, adjusted-R2, NMSE, RMSE, residual histogram and correlation tests. All results will be compared and evaluated with respect to the testing data.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper evaluates the Neural Network AutoRegressive with eXogenous (NNARX) structure in modeling the steam distillation essential oil extraction. The model order will be selected based on Rissanen’s Minimum Description Length (MDL) information criterion. In the training of NNARX model, both unregularized and regularized models will be assessed. There are three regularization levels of the weight decay that will be implemented in this work. The number of hidden neuron and iteration will be optimized before the training session. The testing of the trained model will be based on R2, adjusted-R2, NMSE, RMSE, residual histogram and correlation tests. All results will be compared and evaluated with respect to the testing data.
基于NNARX结构的蒸汽蒸馏精油提取系统黑箱建模
本文评价了带有外生结构的神经网络自回归(NNARX)模型在蒸汽蒸馏精油提取过程中的应用。模型顺序将根据Rissanen的最小描述长度(MDL)信息标准进行选择。在NNARX模型的训练中,将对非正则化模型和正则化模型进行评估。在这项工作中,将实现权衰减的三个正则化级别。隐藏神经元的数量和迭代将在训练前进行优化。训练模型的检验将基于R2、adjusted-R2、NMSE、RMSE、残差直方图和相关检验。所有结果将与测试数据进行比较和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信