Towards Passive Authentication using Inertia Variations: An Experimental Study on Smartphones

James Brown, Aaditya Raval, Mohd Anwar
{"title":"Towards Passive Authentication using Inertia Variations: An Experimental Study on Smartphones","authors":"James Brown, Aaditya Raval, Mohd Anwar","doi":"10.1109/TransAI49837.2020.00019","DOIUrl":null,"url":null,"abstract":"Passive biometrics and behavioral analytics seek to identify users based on their unique patterns of activities. In this paper, we test the feasibility of using time-varying inertia data as passive biometrics to be used for user identification and authentication. We present a deep learning model for inertia pattern recognition that achieved a high accuracy of 87.17%. A fully-connected sequential deep neural network was trained on 6730 sensor data samples, each having 15 features: triaxial measurements from accelerometer, gyroscope, magnetometer, and rotational vector. We further discuss the potential impact of inertia pattern recognition for user identification and authentication.","PeriodicalId":151527,"journal":{"name":"2020 Second International Conference on Transdisciplinary AI (TransAI)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Second International Conference on Transdisciplinary AI (TransAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TransAI49837.2020.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Passive biometrics and behavioral analytics seek to identify users based on their unique patterns of activities. In this paper, we test the feasibility of using time-varying inertia data as passive biometrics to be used for user identification and authentication. We present a deep learning model for inertia pattern recognition that achieved a high accuracy of 87.17%. A fully-connected sequential deep neural network was trained on 6730 sensor data samples, each having 15 features: triaxial measurements from accelerometer, gyroscope, magnetometer, and rotational vector. We further discuss the potential impact of inertia pattern recognition for user identification and authentication.
利用惯性变化实现被动认证:智能手机的实验研究
被动生物识别和行为分析试图根据用户独特的活动模式来识别用户。在本文中,我们测试了使用时变惯性数据作为被动生物特征用于用户身份识别和认证的可行性。我们提出了一种用于惯性模式识别的深度学习模型,达到了87.17%的高精度。在6730个传感器数据样本上训练了一个全连接的序列深度神经网络,每个样本有15个特征:加速度计、陀螺仪、磁力计和旋转矢量的三轴测量。我们进一步讨论惯性模式识别对用户识别和认证的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信