{"title":"Towards Passive Authentication using Inertia Variations: An Experimental Study on Smartphones","authors":"James Brown, Aaditya Raval, Mohd Anwar","doi":"10.1109/TransAI49837.2020.00019","DOIUrl":null,"url":null,"abstract":"Passive biometrics and behavioral analytics seek to identify users based on their unique patterns of activities. In this paper, we test the feasibility of using time-varying inertia data as passive biometrics to be used for user identification and authentication. We present a deep learning model for inertia pattern recognition that achieved a high accuracy of 87.17%. A fully-connected sequential deep neural network was trained on 6730 sensor data samples, each having 15 features: triaxial measurements from accelerometer, gyroscope, magnetometer, and rotational vector. We further discuss the potential impact of inertia pattern recognition for user identification and authentication.","PeriodicalId":151527,"journal":{"name":"2020 Second International Conference on Transdisciplinary AI (TransAI)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Second International Conference on Transdisciplinary AI (TransAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TransAI49837.2020.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Passive biometrics and behavioral analytics seek to identify users based on their unique patterns of activities. In this paper, we test the feasibility of using time-varying inertia data as passive biometrics to be used for user identification and authentication. We present a deep learning model for inertia pattern recognition that achieved a high accuracy of 87.17%. A fully-connected sequential deep neural network was trained on 6730 sensor data samples, each having 15 features: triaxial measurements from accelerometer, gyroscope, magnetometer, and rotational vector. We further discuss the potential impact of inertia pattern recognition for user identification and authentication.