A Study of Language Model for Image Retrieval

Bo Geng, Linjun Yang, Chao Xu
{"title":"A Study of Language Model for Image Retrieval","authors":"Bo Geng, Linjun Yang, Chao Xu","doi":"10.1109/ICDMW.2009.114","DOIUrl":null,"url":null,"abstract":"Recently, various language model approaches have been proposed in the information retrieval realm, with their promising performances in general document and Web page retrieval applications. Based on these achievements, in this paper, we investigate and discuss whether language model approaches can be adapted to content based image retrieval (CBIR), based on the “bag of visual words” image representation. A critical element of language model estimation is smoothing, which adjusts the maximum likelihood estimation to overcome the data sparseness problem. Therefore, we perform extensive studies over different smoothing methods, strategies, and parameters, by showing their impacts to the retrieval performances. Experiments are performed over two popular image retrieval databases, together with some insightful conclusions to facilitate the adaptation of language model approaches to CBIR.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"12 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Recently, various language model approaches have been proposed in the information retrieval realm, with their promising performances in general document and Web page retrieval applications. Based on these achievements, in this paper, we investigate and discuss whether language model approaches can be adapted to content based image retrieval (CBIR), based on the “bag of visual words” image representation. A critical element of language model estimation is smoothing, which adjusts the maximum likelihood estimation to overcome the data sparseness problem. Therefore, we perform extensive studies over different smoothing methods, strategies, and parameters, by showing their impacts to the retrieval performances. Experiments are performed over two popular image retrieval databases, together with some insightful conclusions to facilitate the adaptation of language model approaches to CBIR.
图像检索的语言模型研究
近年来,在信息检索领域提出了多种语言模型方法,在一般的文档和网页检索应用中表现出良好的性能。基于这些成果,本文研究并讨论了语言模型方法是否适用于基于“视觉词袋”图像表示的基于内容的图像检索(CBIR)。平滑是语言模型估计的一个关键要素,它通过调整最大似然估计来克服数据稀疏性问题。因此,我们对不同的平滑方法、策略和参数进行了广泛的研究,展示了它们对检索性能的影响。在两个流行的图像检索数据库上进行了实验,并得出了一些有见地的结论,以促进语言模型方法适应CBIR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信