Roots of second order polynomials with real coefficients in elliptic scator algebra

Manuel Fernández-Guasti
{"title":"Roots of second order polynomials with real coefficients in elliptic scator algebra","authors":"Manuel Fernández-Guasti","doi":"10.53570/jnt.956340","DOIUrl":null,"url":null,"abstract":"− The roots of second order polynomials with real coefficients are obtained in the S 1+2 scator set. Explicit formulae are computed in terms of the polynomial coefficients. Although the scator product does not distribute over addition, the lack of distributivity is surmountable in order to find the zeros of the polynomial. The structure of the solutions and their distribution in 1+2 dimensional scator space are illustrated and discussed. There exist six, two, or eight solutions, depending on the value of polynomial coefficients. Four of these roots only exist in the hypercomplex S 1+2 \\ S 1+1 set.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.956340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

− The roots of second order polynomials with real coefficients are obtained in the S 1+2 scator set. Explicit formulae are computed in terms of the polynomial coefficients. Although the scator product does not distribute over addition, the lack of distributivity is surmountable in order to find the zeros of the polynomial. The structure of the solutions and their distribution in 1+2 dimensional scator space are illustrated and discussed. There exist six, two, or eight solutions, depending on the value of polynomial coefficients. Four of these roots only exist in the hypercomplex S 1+2 \ S 1+1 set.
椭圆scator代数中二阶实系数多项式的根
−实系数二阶多项式的根在s1 +2分布子集中得到。显式公式是根据多项式系数计算的。虽然散射子乘积不分布于加法上,但为了找到多项式的零点,这种分布性的缺乏是可以克服的。讨论了解的结构及其在1+2维散射子空间中的分布。根据多项式系数的值,存在6个、2个或8个解。其中四个根只存在于超复数s1 +2 \ s1 +1集合中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信