Geometric Verification Method of Best Score Increasing Subsequence for Object Instance Recognition

Gede Putra Kusuma, Kristopher David Harjono, Muhammad Taufik Dwi Putra
{"title":"Geometric Verification Method of Best Score Increasing Subsequence for Object Instance Recognition","authors":"Gede Putra Kusuma, Kristopher David Harjono, Muhammad Taufik Dwi Putra","doi":"10.1109/ICITACEE.2019.8904344","DOIUrl":null,"url":null,"abstract":"Weighted Longest Increasing Subsequence (WLIS) and its improvement, Best Increasing Subsequence (BIS) are two methods that has been proposed for pair verification in object instance recognition using local features. Tested on the Stanford Mobile Visual Dataset (SMVS), the BIS achieves better performance than WLIS on most categories, except for the “video frames” category. In this paper we propose several modifications to BIS which resulted in a better overall performance compared to the WLIS and the basic BIS approaches. On average, the proposed Best Score Increasing Subsequence (BSIS) performs 4.53% better than the BIS and 9.43% better than the WLIS.","PeriodicalId":319683,"journal":{"name":"2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITACEE.2019.8904344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Weighted Longest Increasing Subsequence (WLIS) and its improvement, Best Increasing Subsequence (BIS) are two methods that has been proposed for pair verification in object instance recognition using local features. Tested on the Stanford Mobile Visual Dataset (SMVS), the BIS achieves better performance than WLIS on most categories, except for the “video frames” category. In this paper we propose several modifications to BIS which resulted in a better overall performance compared to the WLIS and the basic BIS approaches. On average, the proposed Best Score Increasing Subsequence (BSIS) performs 4.53% better than the BIS and 9.43% better than the WLIS.
目标实例识别的最佳分数递增子序列几何验证方法
加权最长递增子序列(WLIS)及其改进的最佳递增子序列(BIS)是利用局部特征对目标实例识别进行对验证的两种方法。在斯坦福移动视觉数据集(SMVS)上测试,BIS在大多数类别上都比WLIS表现更好,除了“视频帧”类别。在本文中,我们提出了对BIS的一些修改,与WLIS和基本BIS方法相比,这些修改导致了更好的整体性能。平均而言,所提出的最佳分数增加子序列(BSIS)比BIS好4.53%,比WLIS好9.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信