Sipeng Song, J. Whidborne, Mudassir Lone, A. Molina-Cristobal
{"title":"Multi-Objective Optimal Longitudinal Flight Control System Design for Large Flexible Transport Aircraft","authors":"Sipeng Song, J. Whidborne, Mudassir Lone, A. Molina-Cristobal","doi":"10.1109/CONTROL.2018.8516783","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-objective evolutionary algorithm design of a longitudinal optimal controller for a large flexible transport aircraft. The algorithm uses a mixed optimization approach based on a combination of Linear Quadratic Regulator (LQR) control and a Multi-Objective Genetic Algorithm (MOGA) to search over a set of possible weighting function structures and parameter values in order to satisfy a number of conflicting design criteria. The proposed approach offers a number of potential optimal solutions lying on or near the Pareto optimal front of competing objectives. The approach is explained in this paper and some results are presented.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a multi-objective evolutionary algorithm design of a longitudinal optimal controller for a large flexible transport aircraft. The algorithm uses a mixed optimization approach based on a combination of Linear Quadratic Regulator (LQR) control and a Multi-Objective Genetic Algorithm (MOGA) to search over a set of possible weighting function structures and parameter values in order to satisfy a number of conflicting design criteria. The proposed approach offers a number of potential optimal solutions lying on or near the Pareto optimal front of competing objectives. The approach is explained in this paper and some results are presented.