Multimodal Affective Analysis combining Regularized Linear Regression and Boosted Regression Trees

Aleksandar Milchevski, A. Rozza, D. Taskovski
{"title":"Multimodal Affective Analysis combining Regularized Linear Regression and Boosted Regression Trees","authors":"Aleksandar Milchevski, A. Rozza, D. Taskovski","doi":"10.1145/2808196.2811636","DOIUrl":null,"url":null,"abstract":"In this paper we present a multimodal approach for affective analysis that exploits features from video, audio, Electrocardiogram (ECG), and Electrodermal Activity (EDA) combining two regression techniques, namely Boosted Regression Trees and Linear Regression. Moreover, we propose a novel regularization approach for the Linear Regression in order to exploit the temporal correlation of the affective dimensions. The final prediction is obtained using a decision level fusion of the regressors individually trained on the different groups of features. The promising results obtained on the benchmark dataset show the efficacy and effectiveness of the proposed approach.","PeriodicalId":123597,"journal":{"name":"Proceedings of the 5th International Workshop on Audio/Visual Emotion Challenge","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808196.2811636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present a multimodal approach for affective analysis that exploits features from video, audio, Electrocardiogram (ECG), and Electrodermal Activity (EDA) combining two regression techniques, namely Boosted Regression Trees and Linear Regression. Moreover, we propose a novel regularization approach for the Linear Regression in order to exploit the temporal correlation of the affective dimensions. The final prediction is obtained using a decision level fusion of the regressors individually trained on the different groups of features. The promising results obtained on the benchmark dataset show the efficacy and effectiveness of the proposed approach.
结合正则化线性回归和增强回归树的多模态情感分析
在本文中,我们提出了一种多模态情感分析方法,该方法利用视频、音频、心电图(ECG)和皮电活动(EDA)的特征,结合两种回归技术,即增强回归树和线性回归。此外,我们提出了一种新的正则化线性回归方法,以利用情感维度的时间相关性。最后的预测是使用在不同组的特征上单独训练的回归器的决策级融合得到的。在基准数据集上获得的良好结果表明了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信