Weakly-Supervised Deep Learning for Left Ventricle Fibrosis Segmentation in Cardiac MRI Using Image-Level Labels

"Roel Klein, Florence E. van Lieshout, Maarten Z. Kolk, Kylian van Geijtenbeek, Romy Vos, S. Ruipérez-Campillo, Ruibin Feng, B. Deb, Prasanth Ganesan, R. Knops, I. Išgum, S. Narayan, E. Bekkers, B. D. de Vos, Fleur V. Tjong"
{"title":"Weakly-Supervised Deep Learning for Left Ventricle Fibrosis Segmentation in Cardiac MRI Using Image-Level Labels","authors":"\"Roel Klein, Florence E. van Lieshout, Maarten Z. Kolk, Kylian van Geijtenbeek, Romy Vos, S. Ruipérez-Campillo, Ruibin Feng, B. Deb, Prasanth Ganesan, R. Knops, I. Išgum, S. Narayan, E. Bekkers, B. D. de Vos, Fleur V. Tjong\"","doi":"10.22489/CinC.2022.197","DOIUrl":null,"url":null,"abstract":"Automated segmentation of myocardial fibrosis in late gadolinium enhancement (LGE) cardiac MRI (CMR) has the potential to improve efficiency and precision of diagnosis and treatment of cardiomyopathies. However, state-of-the-art Deep Learning approaches require manual pixel-level annotations. Using weaker labels can greatly reduce manual annotation time and expedite dataset curation, which is why we propose fibrosis segmentation methods using either slice-level or stack-level fibrosis labels. 5759 short-axis LGE CMR image slices were retrospectively obtained from 482 patients. U-Nets with slice-level and stack-level supervision are trained with 446 weakly-labeled patients by making use of a myocardium segmentation U-Net and fibrosis classification Dilated Residual Networks (DRN). For comparison, a U-Net is trained with pixel-level supervision using a training set of 81 patients. On the proprietary test set of 24 patients, pixel-level, slice-level and stack-level supervision reach Dice scores of 0.74, 0.70 and 0.70, while on the external Emidec dataset of 100 patients Dice scores of 0.55, 0.61 and 0.52 were obtained. Results indicate that using larger weakly-annotated datasets can approach the performance of methods using pixel-level annotated datasets and potentially improve generalization to external datasets.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated segmentation of myocardial fibrosis in late gadolinium enhancement (LGE) cardiac MRI (CMR) has the potential to improve efficiency and precision of diagnosis and treatment of cardiomyopathies. However, state-of-the-art Deep Learning approaches require manual pixel-level annotations. Using weaker labels can greatly reduce manual annotation time and expedite dataset curation, which is why we propose fibrosis segmentation methods using either slice-level or stack-level fibrosis labels. 5759 short-axis LGE CMR image slices were retrospectively obtained from 482 patients. U-Nets with slice-level and stack-level supervision are trained with 446 weakly-labeled patients by making use of a myocardium segmentation U-Net and fibrosis classification Dilated Residual Networks (DRN). For comparison, a U-Net is trained with pixel-level supervision using a training set of 81 patients. On the proprietary test set of 24 patients, pixel-level, slice-level and stack-level supervision reach Dice scores of 0.74, 0.70 and 0.70, while on the external Emidec dataset of 100 patients Dice scores of 0.55, 0.61 and 0.52 were obtained. Results indicate that using larger weakly-annotated datasets can approach the performance of methods using pixel-level annotated datasets and potentially improve generalization to external datasets.
基于图像级标签的弱监督深度学习心脏MRI左心室纤维化分割
晚期钆增强(LGE)心脏MRI (CMR)对心肌纤维化的自动分割有可能提高心肌病诊断和治疗的效率和准确性。然而,最先进的深度学习方法需要手动像素级注释。使用较弱的标签可以大大减少人工标注时间并加快数据集管理,这就是为什么我们提出使用切片级或堆栈级纤维化标签的纤维化分割方法。回顾性获取482例患者的短轴LGE CMR图像切片5759张。利用心肌分割U-Net和纤维化分类扩张残余网络(DRN),对446例弱标记患者进行了具有切片级和堆栈级监督的U-Net训练。为了进行比较,使用81名患者的训练集对U-Net进行像素级监督训练。在24例患者的专有测试集上,像素级、切片级和堆栈级监督的Dice得分分别为0.74、0.70和0.70,而在100例患者的外部Emidec数据集上,Dice得分分别为0.55、0.61和0.52。结果表明,使用较大的弱标注数据集可以接近使用像素级标注数据集的方法的性能,并有可能提高对外部数据集的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信