3D Facial Expression Recognition Using Deep Feature Fusion CNN

Kun Tian, Liaoyuan Zeng, S. McGrath, Qian Yin, Wenyi Wang
{"title":"3D Facial Expression Recognition Using Deep Feature Fusion CNN","authors":"Kun Tian, Liaoyuan Zeng, S. McGrath, Qian Yin, Wenyi Wang","doi":"10.1109/ISSC.2019.8904930","DOIUrl":null,"url":null,"abstract":"As an important way of human communication, facial expression not only reflects our mental activities but also provides useful information for human behavior research. Recently, 3D technology becomes promising method to achieve robust facial expression analysis. 3D face scans are robust to lighting and pose variations. In this paper, a novel deep feature fusion convolution neural network (CNN) is designed for 3D facial expression recognition (FER). Each 3D face scan is firstly represented as 2D facial attribute maps (including depth, normal, and shape index values). Then, we combine different of facial attribute maps to learn facial representations by fine-tuning a pre-trained deep feature fusion CNN subnet trained from a large-scale image dataset for universal visual tasks. Moreover, Global Average Pooling is utilized to reduce the number of parameters to decrease the effect of overfitting. The experiments are conducted on the Bosphorus database and the results demonstrate the effectiveness of the proposed method.","PeriodicalId":312808,"journal":{"name":"2019 30th Irish Signals and Systems Conference (ISSC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 30th Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC.2019.8904930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

As an important way of human communication, facial expression not only reflects our mental activities but also provides useful information for human behavior research. Recently, 3D technology becomes promising method to achieve robust facial expression analysis. 3D face scans are robust to lighting and pose variations. In this paper, a novel deep feature fusion convolution neural network (CNN) is designed for 3D facial expression recognition (FER). Each 3D face scan is firstly represented as 2D facial attribute maps (including depth, normal, and shape index values). Then, we combine different of facial attribute maps to learn facial representations by fine-tuning a pre-trained deep feature fusion CNN subnet trained from a large-scale image dataset for universal visual tasks. Moreover, Global Average Pooling is utilized to reduce the number of parameters to decrease the effect of overfitting. The experiments are conducted on the Bosphorus database and the results demonstrate the effectiveness of the proposed method.
基于深度特征融合的三维面部表情识别
面部表情作为人类交流的一种重要方式,不仅反映了我们的心理活动,而且为人类行为研究提供了有用的信息。近年来,三维技术成为实现鲁棒性面部表情分析的重要手段。3D面部扫描对光线和姿势变化都很敏感。本文设计了一种用于三维面部表情识别的深度特征融合卷积神经网络(CNN)。每次3D人脸扫描首先被表示为二维人脸属性图(包括深度、法线和形状指标值)。然后,我们结合不同的面部属性映射,通过微调从通用视觉任务的大规模图像数据集训练的预训练深度特征融合CNN子网来学习面部表征。利用全局平均池化(Global Average Pooling)减少参数个数,降低过拟合的影响。在博斯普鲁斯数据库上进行了实验,结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信