A spatio-temporal covariance descriptor for person re-identification

Bassem Hadjkacem, W. Ayedi, M. Abid, H. Snoussi
{"title":"A spatio-temporal covariance descriptor for person re-identification","authors":"Bassem Hadjkacem, W. Ayedi, M. Abid, H. Snoussi","doi":"10.1109/ISDA.2015.7489188","DOIUrl":null,"url":null,"abstract":"In intelligent video surveillance systems, tracking people in non overlapping camera networks is a major challenge. To deal with the change of illumination, occlusion, change of view, etc., it is essential to seek the most robust object descriptor invariant during changes. By exploiting the performance of covariance descriptor, we propose a spatio-temporal covariance descriptor. This descriptor deals not only one picture as the majority of descriptors, but also considers groups of pictures to implicitly encode the described object motion by the integration of time parameter. The experiments conducted on “CAVIAR4REID” database showed these improvements. The person recognition rate in the first rank is improved by more than 10% compared to other descriptors.","PeriodicalId":196743,"journal":{"name":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2015.7489188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In intelligent video surveillance systems, tracking people in non overlapping camera networks is a major challenge. To deal with the change of illumination, occlusion, change of view, etc., it is essential to seek the most robust object descriptor invariant during changes. By exploiting the performance of covariance descriptor, we propose a spatio-temporal covariance descriptor. This descriptor deals not only one picture as the majority of descriptors, but also considers groups of pictures to implicitly encode the described object motion by the integration of time parameter. The experiments conducted on “CAVIAR4REID” database showed these improvements. The person recognition rate in the first rank is improved by more than 10% compared to other descriptors.
人再识别的时空协方差描述符
在智能视频监控系统中,在不重叠的摄像机网络中跟踪人员是一个重大挑战。为了处理光照、遮挡、视角等变化,在变化过程中寻求最鲁棒的目标描述符不变性是至关重要的。利用协方差描述符的性能,提出了一种时空协方差描述符。该描述符不仅以一张图片作为描述符的主体,而且考虑多组图片,通过对时间参数的积分对被描述对象的运动进行隐式编码。在“CAVIAR4REID”数据库上进行的实验显示了这些改进。与其他描述符相比,第一级的人物识别率提高了10%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信