MMFV: A Multi-Movement Finger-Video Database for Contactless Fingerprint Recognition

Aakarsh Malhotra, Mayank Vatsa, Richa Singh
{"title":"MMFV: A Multi-Movement Finger-Video Database for Contactless Fingerprint Recognition","authors":"Aakarsh Malhotra, Mayank Vatsa, Richa Singh","doi":"10.1109/IWBF57495.2023.10156919","DOIUrl":null,"url":null,"abstract":"Biometric authentication during the COVID-19 and post-pandemic times require a touchless authentication mechanism. While existing studies showcase the use of fingerphoto for touchless authentication, a short video of the finger can provide many good-quality frames. This research presents the first publicly available finger-video dataset, titled Multi-Movement Finger-Video (MMFV) Database. The MMFV dataset has 3792 videos from 336 classes, acquired over two sessions, and spans three different movement types (pitch, yaw, and roll). To establish the baseline performance for the proposed MMFV database, we perform recognition using seven popular fingerprint and deep learning-based algorithms for fingerphoto recognition. The recognition is performed using a fixed, randomly selected frame from all the algorithms. Experimental results showcase that Siamese network-based verification provides the most optimal results across different movements, with observed EER as low as 2.70%.","PeriodicalId":273412,"journal":{"name":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF57495.2023.10156919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biometric authentication during the COVID-19 and post-pandemic times require a touchless authentication mechanism. While existing studies showcase the use of fingerphoto for touchless authentication, a short video of the finger can provide many good-quality frames. This research presents the first publicly available finger-video dataset, titled Multi-Movement Finger-Video (MMFV) Database. The MMFV dataset has 3792 videos from 336 classes, acquired over two sessions, and spans three different movement types (pitch, yaw, and roll). To establish the baseline performance for the proposed MMFV database, we perform recognition using seven popular fingerprint and deep learning-based algorithms for fingerphoto recognition. The recognition is performed using a fixed, randomly selected frame from all the algorithms. Experimental results showcase that Siamese network-based verification provides the most optimal results across different movements, with observed EER as low as 2.70%.
MMFV:一种用于非接触式指纹识别的多动作手指视频数据库
COVID-19和大流行后时期的生物识别认证需要非接触式认证机制。虽然现有的研究展示了使用指纹照片进行非接触式认证,但手指的短视频可以提供许多高质量的框架。本研究提出了第一个公开可用的手指视频数据集,名为多运动手指视频(MMFV)数据库。MMFV数据集有来自336个课程的3792个视频,在两个会话中获得,并跨越三种不同的运动类型(俯仰,偏航和滚动)。为了建立所提出的MMFV数据库的基准性能,我们使用七种流行的指纹和基于深度学习的指纹照片识别算法进行识别。识别是使用从所有算法中随机选择的固定帧来执行的。实验结果表明,基于Siamese网络的验证在不同的动作中提供了最优的结果,观察到的EER低至2.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信