Modelling of Virtual Sensors for Manufacturing Process using Gradient Boosting Technique

B. V. Souza, S. Santos, André Marcorin de Oliveira, S. Givigi
{"title":"Modelling of Virtual Sensors for Manufacturing Process using Gradient Boosting Technique","authors":"B. V. Souza, S. Santos, André Marcorin de Oliveira, S. Givigi","doi":"10.1109/SysCon53073.2023.10131061","DOIUrl":null,"url":null,"abstract":"This paper proposes a learning architecture approach for creating a virtual sensor model that detects product failures by using machine operating data from a discrete manufacturing process based on Gradient Boosting and Random Forest algorithms. The main contribution of this work is to propose a methodology for creating the virtual sensor to predict the manufactured product quality with precision equivalent to that obtained by actual sensors. Simulation results showed that the proposed virtual sensor detects precisely manufacturing failures caused by supplement position to produce the target products.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a learning architecture approach for creating a virtual sensor model that detects product failures by using machine operating data from a discrete manufacturing process based on Gradient Boosting and Random Forest algorithms. The main contribution of this work is to propose a methodology for creating the virtual sensor to predict the manufactured product quality with precision equivalent to that obtained by actual sensors. Simulation results showed that the proposed virtual sensor detects precisely manufacturing failures caused by supplement position to produce the target products.
基于梯度增强技术的制造过程虚拟传感器建模
本文提出了一种学习架构方法,用于创建虚拟传感器模型,该模型通过使用基于梯度增强和随机森林算法的离散制造过程中的机器运行数据来检测产品故障。这项工作的主要贡献是提出了一种创建虚拟传感器的方法来预测制造产品的质量,其精度相当于实际传感器获得的质量。仿真结果表明,所提出的虚拟传感器能够准确地检测出由补位引起的制造故障,从而生产出目标产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信