CFD Simulations of Breaking Stokes Waves

T. Hino, Harushi Ikenoue, Y. Takagi
{"title":"CFD Simulations of Breaking Stokes Waves","authors":"T. Hino, Harushi Ikenoue, Y. Takagi","doi":"10.1115/omae2019-95946","DOIUrl":null,"url":null,"abstract":"\n Free surface flow simulations using CFD (Computational Fluid Dynamics) can be categorized into two approaches in terms of free surface modeling. One is a two-phase flow model which solves both water and air. The other is a single-phase approach in which only the water region is solved with free surface boundary conditions. Breaking waves have been simulated by many researchers using CFD techniques with two-phase flow models in the most cases. In ship flow CFD applications, however, a single-phase approach is often used since this is considered to be more effective and efficient. However, when a single-phase method is applied to flows with bow wave breaking of a blunt ship, it is observed in some cases that numerical solutions fail to reproduce wave breaking well. This may be due to the differences of the air-water interface treatment between two-phase and single-phase approaches. To investigate these differences, breaking of Stokes waves is simulated by using both single-phase and two-phase flow models. The comparisons of single-phase and two-phase approaches are made in wave profiles, pressure and vorticity distributions. The velocity distributions near the free surface boundaries are also compared. Through these comparisons, impact of free surface boundary conditions in a single-phase approach to wave breaking phenomena is discussed.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Free surface flow simulations using CFD (Computational Fluid Dynamics) can be categorized into two approaches in terms of free surface modeling. One is a two-phase flow model which solves both water and air. The other is a single-phase approach in which only the water region is solved with free surface boundary conditions. Breaking waves have been simulated by many researchers using CFD techniques with two-phase flow models in the most cases. In ship flow CFD applications, however, a single-phase approach is often used since this is considered to be more effective and efficient. However, when a single-phase method is applied to flows with bow wave breaking of a blunt ship, it is observed in some cases that numerical solutions fail to reproduce wave breaking well. This may be due to the differences of the air-water interface treatment between two-phase and single-phase approaches. To investigate these differences, breaking of Stokes waves is simulated by using both single-phase and two-phase flow models. The comparisons of single-phase and two-phase approaches are made in wave profiles, pressure and vorticity distributions. The velocity distributions near the free surface boundaries are also compared. Through these comparisons, impact of free surface boundary conditions in a single-phase approach to wave breaking phenomena is discussed.
破裂斯托克斯波的CFD模拟
利用CFD(计算流体动力学)进行自由表面流动模拟可以根据自由表面建模分为两种方法。一种是两相流模型,它能同时解决水和空气的问题。另一种是在自由表面边界条件下只求解水区域的单相方法。许多研究人员在大多数情况下使用CFD技术和两相流模型来模拟破碎波。然而,在船舶流动CFD应用中,通常使用单相方法,因为这种方法被认为更有效和高效。然而,当将单相法应用于钝船首破波流动时,在某些情况下,数值解不能很好地再现破波。这可能是由于两相和单相方法之间的空气-水界面处理的差异。为了研究这些差异,使用单相和两相流模型模拟了斯托克斯波的破碎。在波浪剖面、压力和涡度分布方面对单相法和两相法进行了比较。比较了自由表面边界附近的速度分布。通过这些比较,讨论了单相法中自由表面边界条件对破波现象的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信