Multi-target tracking in mobility sensor networks using Ant Colony Optimization

S. B. Kumar, G. Myilsamy
{"title":"Multi-target tracking in mobility sensor networks using Ant Colony Optimization","authors":"S. B. Kumar, G. Myilsamy","doi":"10.1109/ICE-CCN.2013.6528522","DOIUrl":null,"url":null,"abstract":"Target tracking is one of the applications of Mobile Sensor Networks. Mobility management is the important parameter that affects the performance and lifetime of the Mobile sensor networks. So we need to manage the mobility in a controlled manner. Existing methods attempt to achieve these requirements for controlled mobility single target tracking only. In this paper, we propose a Multi-Target Tracking method using Ant Colony Optimization to satisfy these requirements. In this proposed method, targets current position values are estimated at every time step. Then, predicting the next position value of each target by using the previous time-step estimated values. Interval Analysis is used for estimation and prediction of position values. Then the proposed method consists of moving the mobile node in an optimal way to cover Multi-Target. The optimal path is been chosen by Ant Colony Optimization technique. Simulations results shows the advantages of the proposed method compared to single target tracking methods.","PeriodicalId":286830,"journal":{"name":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE-CCN.2013.6528522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Target tracking is one of the applications of Mobile Sensor Networks. Mobility management is the important parameter that affects the performance and lifetime of the Mobile sensor networks. So we need to manage the mobility in a controlled manner. Existing methods attempt to achieve these requirements for controlled mobility single target tracking only. In this paper, we propose a Multi-Target Tracking method using Ant Colony Optimization to satisfy these requirements. In this proposed method, targets current position values are estimated at every time step. Then, predicting the next position value of each target by using the previous time-step estimated values. Interval Analysis is used for estimation and prediction of position values. Then the proposed method consists of moving the mobile node in an optimal way to cover Multi-Target. The optimal path is been chosen by Ant Colony Optimization technique. Simulations results shows the advantages of the proposed method compared to single target tracking methods.
基于蚁群优化的移动传感器网络多目标跟踪
目标跟踪是移动传感器网络的应用之一。移动性管理是影响移动传感器网络性能和寿命的重要参数。所以我们需要以一种可控的方式来管理流动性。现有的方法试图实现这些要求,控制机动单目标跟踪。本文提出了一种基于蚁群优化的多目标跟踪方法来满足这些要求。该方法在每个时间步长估计目标的当前位置值。然后,利用之前的时间步长估计值预测每个目标的下一个位置值。区间分析用于位置值的估计和预测。然后,该方法包括以最优方式移动移动节点以覆盖多目标。采用蚁群优化技术选择最优路径。仿真结果表明了该方法相对于单目标跟踪方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信