{"title":"Multi-Scale Feature Enhancement Network for Face Forgery Detection","authors":"Zhiyuan Ma, Xue Mei, Hao Chen, Jienan Shen","doi":"10.1145/3589572.3589577","DOIUrl":null,"url":null,"abstract":"Nowadays, synthesizing realistic fake face images and videos becomes easy benefiting from the advance in generation technology. With the popularity of face forgery, abuse of the technology occurs from time to time, which promotes the research on face forgery detection to be an emergency. To deal with the potential risks, we propose a face forgery detection method based on multi-scale feature enhancement. Specifically, we analyze the forgery traces from the perspective of texture and frequency domain, respectively. We find that forgery traces are hard to be perceived by human eyes but noticeable in shallow layers of CNNs and middle-frequency domain and high-frequency domain. Hence, to reserve more forgery information, we design a texture feature enhancement module and a frequency domain feature enhancement module, respectively. The experiments on FaceForensics++ dataset and Celeb-DF dataset show that our method exceeds most existing networks and methods, which proves that our method has strong classification ability.","PeriodicalId":296325,"journal":{"name":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589572.3589577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, synthesizing realistic fake face images and videos becomes easy benefiting from the advance in generation technology. With the popularity of face forgery, abuse of the technology occurs from time to time, which promotes the research on face forgery detection to be an emergency. To deal with the potential risks, we propose a face forgery detection method based on multi-scale feature enhancement. Specifically, we analyze the forgery traces from the perspective of texture and frequency domain, respectively. We find that forgery traces are hard to be perceived by human eyes but noticeable in shallow layers of CNNs and middle-frequency domain and high-frequency domain. Hence, to reserve more forgery information, we design a texture feature enhancement module and a frequency domain feature enhancement module, respectively. The experiments on FaceForensics++ dataset and Celeb-DF dataset show that our method exceeds most existing networks and methods, which proves that our method has strong classification ability.