Detecting Time Synchronization Attacks in Cyber-Physical Systems with Machine Learning Techniques

Jingxuan Wang, Wenting Tu, L. Hui, S. Yiu, E. Wang
{"title":"Detecting Time Synchronization Attacks in Cyber-Physical Systems with Machine Learning Techniques","authors":"Jingxuan Wang, Wenting Tu, L. Hui, S. Yiu, E. Wang","doi":"10.1109/ICDCS.2017.25","DOIUrl":null,"url":null,"abstract":"Recently, researchers found a new type of attacks, called time synchronization attack (TS attack), in cyber-physical systems. Instead of modifying the measurements from the system, this attack only changes the time stamps of the measurements. Studies show that these attacks are realistic and practical. However, existing detection techniques, e.g. bad data detection (BDD) and machine learning methods, may not be able to catch these attacks. In this paper, we develop a \"first difference aware\" machine learning (FDML) classifier to detect this attack. The key concept behind our classifier is to use the feature of \"first difference\", borrowed from economics and statistics. Simulations on IEEE 14-bus system with real data from NYISO have shown that our FDML classifier can effectively detect both TS attacks and other cyber attacks.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Recently, researchers found a new type of attacks, called time synchronization attack (TS attack), in cyber-physical systems. Instead of modifying the measurements from the system, this attack only changes the time stamps of the measurements. Studies show that these attacks are realistic and practical. However, existing detection techniques, e.g. bad data detection (BDD) and machine learning methods, may not be able to catch these attacks. In this paper, we develop a "first difference aware" machine learning (FDML) classifier to detect this attack. The key concept behind our classifier is to use the feature of "first difference", borrowed from economics and statistics. Simulations on IEEE 14-bus system with real data from NYISO have shown that our FDML classifier can effectively detect both TS attacks and other cyber attacks.
利用机器学习技术检测网络物理系统中的时间同步攻击
最近,研究人员在网络物理系统中发现了一种新的攻击类型,称为时间同步攻击(TS攻击)。这种攻击不会修改来自系统的度量值,而只会更改度量值的时间戳。研究表明,这些攻击是现实可行的。然而,现有的检测技术,例如坏数据检测(BDD)和机器学习方法,可能无法捕获这些攻击。在本文中,我们开发了一个“第一差分感知”机器学习(FDML)分类器来检测这种攻击。我们的分类器背后的关键概念是使用“第一差异”的特征,借用了经济学和统计学。利用NYISO的真实数据对IEEE 14总线系统进行了仿真,结果表明我们的FDML分类器可以有效地检测TS攻击和其他网络攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信