Hybridization of Base Classifiers of Random Subsample Ensembles for Enhanced Performance in High Dimensional Feature Spaces

Santhosh Pathical, G. Serpen
{"title":"Hybridization of Base Classifiers of Random Subsample Ensembles for Enhanced Performance in High Dimensional Feature Spaces","authors":"Santhosh Pathical, G. Serpen","doi":"10.1109/ICMLA.2010.118","DOIUrl":null,"url":null,"abstract":"This paper presents a simulation-based empirical study of the performance profile of random sub sample ensembles with a hybrid mix of base learner composition in high dimensional feature spaces. The performance of hybrid random sub sample ensemble that uses a combination of C4.5, k-nearest neighbor (kNN) and naïve Bayes base learners is assessed through statistical testing in comparison to those of homogeneous random sub sample ensembles that employ only one type of base learner. Simulation study employs five datasets with up to 20K features from the UCI Machine Learning Repository. Random sub sampling without replacement is used to map the original high dimensional feature space of the five datasets to a multiplicity of lower dimensional feature subspaces. The simulation study explores the effect of certain design parameters that include the count of base classifiers and sub sampling rate on the performance of the hybrid random subspace ensemble. The ensemble architecture utilizes the voting combiner in all cases. Simulation results indicate that hybridization of base learners for random sub sample ensemble improves the prediction accuracy rates and projects a more robust performance.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a simulation-based empirical study of the performance profile of random sub sample ensembles with a hybrid mix of base learner composition in high dimensional feature spaces. The performance of hybrid random sub sample ensemble that uses a combination of C4.5, k-nearest neighbor (kNN) and naïve Bayes base learners is assessed through statistical testing in comparison to those of homogeneous random sub sample ensembles that employ only one type of base learner. Simulation study employs five datasets with up to 20K features from the UCI Machine Learning Repository. Random sub sampling without replacement is used to map the original high dimensional feature space of the five datasets to a multiplicity of lower dimensional feature subspaces. The simulation study explores the effect of certain design parameters that include the count of base classifiers and sub sampling rate on the performance of the hybrid random subspace ensemble. The ensemble architecture utilizes the voting combiner in all cases. Simulation results indicate that hybridization of base learners for random sub sample ensemble improves the prediction accuracy rates and projects a more robust performance.
基于杂化的随机子样本集成基分类器在高维特征空间中的增强性能
本文对高维特征空间中混合基本学习者组合的随机子样本集成的性能概况进行了基于仿真的实证研究。使用C4.5、k近邻(kNN)和naïve贝叶斯基学习器组合的混合随机子样本集成的性能通过统计检验与仅使用一种基学习器的均匀随机子样本集成的性能进行了比较。模拟研究使用了来自UCI机器学习存储库的五个数据集,其中包含多达20K个特征。采用不替换的随机子采样方法,将5个数据集的原始高维特征空间映射到多个低维特征子空间。仿真研究探讨了某些设计参数(包括基本分类器的数量和子采样率)对混合随机子空间集成性能的影响。集成体系结构在所有情况下都使用投票组合器。仿真结果表明,混合基学习器用于随机子样本集成提高了预测准确率,并具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信