{"title":"Linear Models","authors":"Cedric E. Ginestet","doi":"10.1201/9781315367002-6","DOIUrl":null,"url":null,"abstract":"1.2 BLUEs Definition 1. Given a random sample, Y1, . . . , Yn ind ∼ f(X,β); an estimator β̂(Y1, . . . , Yn) of the parameter β is said to be unbiased if E[β̂|X] = β, for every β ∈ Rp . Definition 2. An estimator β̂ of a parameter β is said to be Best Linear Unbiased Estimator (BLUE), if it is a linear function of the observed values y, an unbiased estimator of β; and if for any other linear unbiased estimator β̃, we have Var[β̂|X] ≤ Var[β̃|X].","PeriodicalId":286721,"journal":{"name":"Machine Learning Fundamentals","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Fundamentals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315367002-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
1.2 BLUEs Definition 1. Given a random sample, Y1, . . . , Yn ind ∼ f(X,β); an estimator β̂(Y1, . . . , Yn) of the parameter β is said to be unbiased if E[β̂|X] = β, for every β ∈ Rp . Definition 2. An estimator β̂ of a parameter β is said to be Best Linear Unbiased Estimator (BLUE), if it is a linear function of the observed values y, an unbiased estimator of β; and if for any other linear unbiased estimator β̃, we have Var[β̂|X] ≤ Var[β̃|X].
1.2 BLUEs的定义给定一个随机样本Y1,…, Yn ind ~ f(X,β);一个估计量β·(Y1,…,对于每一个β∈Rp,如果E[β∈X] = β,则参数β的Yn)是无偏的。定义2。一个参数β的估计量β·是最佳线性无偏估计量(BLUE),如果它是观测值y的线性函数,则是β的无偏估计量;对于任何其他的线性无偏估计量,我们有Var[β²|X]≤Var[β²|X]。