Computation of Moments in the Trellis

A. Heim, V. Sidorenko, U. Sorger
{"title":"Computation of Moments in the Trellis","authors":"A. Heim, V. Sidorenko, U. Sorger","doi":"10.1109/ISIT.2008.4595441","DOIUrl":null,"url":null,"abstract":"Decisions on sources with memory transmitted over independent channels can be taken by employing trellis calculations. In this paper, it is shown that for a certain class of functions their moments can be computed in the trellis, too. This is done by generalizing the forward/backward recursion known from the BCJR algorithm [1]. In analogy to the symbol probabilities, by introducing a constraint at a certain depth in the trellis we obtain symbol moments. These moments are required for an efficient implementation of the discriminated belief propagation algorithm in [2], and can furthermore be utilized to compute conditional entropies in the trellis. The moment computation algorithm has the same asymptotic complexity as the BCJR algorithm. It is applicable to any commutative semi-ring, thus also providing a generalization of the Viterbi algorithm [3].","PeriodicalId":194674,"journal":{"name":"2008 IEEE International Symposium on Information Theory","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2008.4595441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decisions on sources with memory transmitted over independent channels can be taken by employing trellis calculations. In this paper, it is shown that for a certain class of functions their moments can be computed in the trellis, too. This is done by generalizing the forward/backward recursion known from the BCJR algorithm [1]. In analogy to the symbol probabilities, by introducing a constraint at a certain depth in the trellis we obtain symbol moments. These moments are required for an efficient implementation of the discriminated belief propagation algorithm in [2], and can furthermore be utilized to compute conditional entropies in the trellis. The moment computation algorithm has the same asymptotic complexity as the BCJR algorithm. It is applicable to any commutative semi-ring, thus also providing a generalization of the Viterbi algorithm [3].
网格中矩的计算
通过采用栅格计算,可以确定在独立信道上传输具有内存的源。本文证明了对于某类函数,它们的矩也可以在网格中计算。这是通过推广BCJR算法[1]中已知的正向/向后递归来实现的。与符号概率类似,通过在网格中引入一定深度的约束,我们获得符号矩。这些矩是有效实现[2]中的判别信念传播算法所必需的,并且可以进一步用于计算网格中的条件熵。矩计算算法与BCJR算法具有相同的渐近复杂度。它适用于任何可交换半环,从而也提供了Viterbi算法的推广[3]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信